【題目】如圖,在數(shù)軸上有 A B 、C 、D 四個(gè)點(diǎn),分別對(duì)應(yīng)的數(shù)為 a ,b c , d ,且滿足 a b 是方程| x7|1的兩個(gè)解(a b),且(c 12)2 | d 16 |互為相反數(shù).

1)填空: a b 、 c 、 d ;

2)若線段 AB 3 個(gè)單位/ 秒的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD 1 單位長(zhǎng)度/ 秒向左勻速運(yùn)動(dòng),并設(shè)運(yùn)動(dòng)時(shí)間為t 秒,A B 兩點(diǎn)都運(yùn)動(dòng)在線段CD 上(不與C , D 兩個(gè)端點(diǎn)重合),若BD2AC ,求t 的值;

3)在(2)的條件下,線段 AB ,線段CD 繼續(xù)運(yùn)動(dòng),當(dāng)點(diǎn) B 運(yùn)動(dòng)到點(diǎn) D 的右側(cè)時(shí),問(wèn)是否存在時(shí)間t ,使 BC3AD ?若存在,求t 的值;若不存在,說(shuō)明理由.

【答案】1a 8 b 6,c 12 d 16;(2;(3t t 時(shí), BC 3AD

【解析】

1)根據(jù)絕對(duì)值的含義為正數(shù)) 及平方和絕對(duì)值的非負(fù)性 即可求解;(2AB 、CD 運(yùn)動(dòng)時(shí), 點(diǎn) A 對(duì)應(yīng)的數(shù)為: 8 3t , 點(diǎn) B 對(duì)應(yīng)的數(shù)為: 6 3t , 點(diǎn)C 對(duì)應(yīng)的數(shù)為:12 t , 點(diǎn) D 對(duì)應(yīng)的數(shù)為: 16 t ,根據(jù)題意列出關(guān)于t的等式求解即可;(3)根據(jù)題意求出t的取值范圍,用含t的式子表示出BC和AD,再根據(jù)BC3AD即可求出t.

1| x 7 | 1,

x 8 6

a 8 b 6,

(c 12)2 | d 16 | 0

c 12 , d 16

2 AB CD 運(yùn)動(dòng)時(shí), 點(diǎn) A 對(duì)應(yīng)的數(shù)為: 8 3t , 點(diǎn) B 對(duì)應(yīng)的數(shù)為: 6 3t , 點(diǎn)C 對(duì)應(yīng)的數(shù)為:12 t 點(diǎn) D 對(duì)應(yīng)的數(shù)為: 16 t ,

BD |16 t (6 3t) || 22 4t |

AC |12 t (8 3t) || 20 4t |

BD 2 AC

22 4t 2(20 4t)

解得:

當(dāng)時(shí),此時(shí)點(diǎn) B 對(duì)應(yīng)的數(shù)為,點(diǎn)C 對(duì)應(yīng)的數(shù)為,此時(shí)不滿足題意,

3)當(dāng)點(diǎn) B 運(yùn)動(dòng)到點(diǎn) D 的右側(cè)時(shí), 此時(shí)6 3t 16 t

,

BC |12 t (6 3t ) ||18 4t |

AD |16 t (8 3t) || 24 4t | ,

BC 3AD ,

|18 4t | 3 | 24 4t |

解得: t t

經(jīng)驗(yàn)證,t t BC 3AD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)表示,點(diǎn)表示,點(diǎn)表示.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿?cái)?shù)軸正方向以每秒個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),沿?cái)?shù)軸負(fù)方向以每秒個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為.

(1)當(dāng)為何值時(shí),、兩點(diǎn)相遇?相遇點(diǎn)所對(duì)應(yīng)的數(shù)是多少?

(2)在點(diǎn)出發(fā)后到達(dá)點(diǎn)之前,求為何值時(shí),點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離相等;

(3)在點(diǎn)向右運(yùn)動(dòng)的過(guò)程中,的中點(diǎn),在點(diǎn)到達(dá)點(diǎn)之前,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】□ABCD,過(guò)點(diǎn)DDE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DFBE,連接AFBF.

1)求證:四邊形BFDE是矩形;

2)若CF3,BF4,DF5,求證:AF平分∠DAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+m的圖象相交于點(diǎn)A21).

(1)分別求出這兩個(gè)函數(shù)的解析式;

(2)當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于0;

(3)若一次函數(shù)與反比例函數(shù)另一交點(diǎn)為B,且縱坐標(biāo)為﹣4,當(dāng)x取什么范圍時(shí),反比例函數(shù)值大于一次函數(shù)的值;

(4)試判斷點(diǎn)P(﹣1,5)關(guān)于x軸的對(duì)稱點(diǎn)P′是否在一次函數(shù)y=kx+m的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代有著輝煌的數(shù)學(xué)成就,《周牌算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》等是我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).

1)小聰想從這4部數(shù)學(xué)名著中隨機(jī)選擇1部閱讀,求他選中《九章算術(shù)》的概率;

2)小聰擬從這4部數(shù)學(xué)名著中選擇2部作為假課外拓展學(xué)習(xí)內(nèi)容,用列表或樹(shù)狀圖求選中的名著恰好是《九章算術(shù)》和《周牌算經(jīng)》的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的軌道上有兩個(gè)點(diǎn)甲與乙,開(kāi)始時(shí)甲在A處,乙在C處,它們沿著正方形軌道順時(shí)針同時(shí)出發(fā),甲的速度為每秒1 cm,乙的速度為每秒5 cm,已知正方形軌道ABCD的邊長(zhǎng)為2 cm,則乙在第2 020次追上甲時(shí)的位置在( 。

A.ABB.BC

C.CDD.AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)(a>0,a為常數(shù))和在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在的圖象上,MC丄x軸于點(diǎn)C,交的圖象于點(diǎn)A,MD丄y軸于點(diǎn)D,交的圖象于點(diǎn)B,當(dāng)點(diǎn)M在的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:

①S△CDB=S△CCA

②四邊形OAMB的面積為2-a

③當(dāng)a=l時(shí),點(diǎn)A是MC的中點(diǎn)

④若S四邊形OAMB+S△CDB,則四邊形OCMD為正方形.其中正確是________(把所有正確結(jié)論的序號(hào)寫(xiě)在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊長(zhǎng)為4,對(duì)角線相交于點(diǎn)P,頂點(diǎn)A、C分別在x軸、y軸的正半軸上,拋物線L經(jīng)過(guò)0、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)點(diǎn)P的坐標(biāo)為_(kāi)_____

(2)求拋物線L的解析式.

(3)求△OAE與△OCE的面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)填一填:

把下列各數(shù)填入相應(yīng)的大括號(hào)里:

5,-1,0,-6,+8,0.3,-,+,-0.72,

正數(shù)集合:{ __________________ …}

整數(shù)集合:{__________________…}

負(fù)數(shù)集合:{ __________________ …}

分?jǐn)?shù)集合:{__________________ …}

查看答案和解析>>

同步練習(xí)冊(cè)答案