【題目】如圖,在平面直角坐標(biāo)系xOy中,Rt△ABC的直角邊AB在x軸上,∠ABC=90°.點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(3,4),M是BC邊的中點(diǎn),函數(shù)()的圖象經(jīng)過點(diǎn)M.
(1)求k的值;
(2)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)180°后得到△DEF(點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D,E,F(xiàn)),且EF在y軸上,點(diǎn)D在函數(shù)()的圖象上,求直線DF的表達(dá)式.
【答案】(1)6;(2)y=2x-1.
【解析】
(1)根據(jù)直角三角形的性質(zhì)和坐標(biāo)與圖形的特點(diǎn)求得點(diǎn)的坐標(biāo),將其代入反比例函數(shù)解析式求得的值;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)推知:,故其對(duì)應(yīng)邊、角相等:,,,由函數(shù)圖象上點(diǎn)的坐標(biāo)特征得到:,.結(jié)合得到,利用待定系數(shù)法求得結(jié)果.
(1)∵Rt△ABC的直角邊AB在x軸上,∠ABC=90°,點(diǎn)C的坐標(biāo)為(3,4),
∴點(diǎn)B的坐標(biāo)為(3,0),CB=4.
∵M(jìn)是BC邊的中點(diǎn),
∴點(diǎn)M的坐標(biāo)為(3,2).
∴k=3×2=6.
(2)∵△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)180°后得到△DEF,
∴△DEF≌△ABC.
∴DE=AB,EF=BC,∠DEF=∠ABC=90°.
∵點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(3,0),
∴AB=2.
∴DE=2.
∵EF在y軸上,
∴點(diǎn)D的橫坐標(biāo)為2.
當(dāng)x=2時(shí),y=3.
∴點(diǎn)D的坐標(biāo)為(2,3).
∴點(diǎn)E的坐標(biāo)為(0,3).
∵EF=BC=4,
∴點(diǎn)F的坐標(biāo)為(0,-1).
設(shè)直線DF的表達(dá)式為y=ax+b,將點(diǎn)D,F(xiàn)的坐標(biāo)代入,
∴直線DF的表達(dá)式為y=2x-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF= ,BD=2,則菱形ABCD的面積為( )
A.2
B.
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1 , 使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長,分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,直接寫出菱形AECF的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小梅在瀏覽某電影評(píng)價(jià)網(wǎng)站時(shí),搜索了最近關(guān)注到的甲、乙、丙三部電影,網(wǎng)站通過對(duì)觀眾的抽樣調(diào)查,得到這三部電影的評(píng)分?jǐn)?shù)據(jù)統(tǒng)計(jì)圖分別如下:
甲、乙、丙三部電影評(píng)分情況統(tǒng)計(jì)圖
根據(jù)以上材料回答下列問題:
(1)小梅根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),對(duì)以上統(tǒng)計(jì)圖中的數(shù)據(jù)進(jìn)行了分析,并通過計(jì)算得到這三部電影抽樣調(diào)查的樣本容量,觀眾評(píng)分的平均數(shù)、眾數(shù)、中位數(shù),請(qǐng)你將下表補(bǔ)充完整:
甲、乙、丙三部電影評(píng)分情況統(tǒng)計(jì)表
電影 | 樣本容量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
甲 | 100 | 3.45 | 5 | |
乙 | 3.66 | 5 | ||
丙 | 100 | 3 | 3.5 |
(2)根據(jù)統(tǒng)計(jì)圖和統(tǒng)計(jì)表中的數(shù)據(jù),可以推斷其中_______電影相對(duì)比較受歡迎,理由是
_______________________________________________________________________.(至少從兩個(gè)不同的角度說明你推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù)。
阿基米德(Archimedes,公元前287~公元前212年,古希臘)是有史以來最偉大的數(shù)學(xué)家之一.
阿基米德折弦定理:如圖1,AB和BC是圓O的兩條弦(即折線ABC是圓的一條折弦), BC>AB,M是 的中點(diǎn),即CD=AB+BD。下面是運(yùn)用“截長法”證明CD=AB+BD的部分過程。
證明:如圖2,在CB上截取CG=AB,連接MA、MB、MC、MG。因?yàn)镸是弧ABC的中點(diǎn),所以MA=MC.
任務(wù):
(1)請(qǐng)按照上面的證明思路,完整證明阿基米德折弦定理,即CD=AB+BD。
(2)如圖3,已知等邊△ABC內(nèi)接于圓O,AB=1,D為 上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線 與 軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的坐標(biāo)為(3,0),與 軸交于點(diǎn)C(0,-3),頂點(diǎn)為D。
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo)。
(2)聯(lián)結(jié)AC,BC,求∠ACB的正切值。
(3)點(diǎn)P是x軸上一點(diǎn),是否存在點(diǎn)P使得△PBD與△CAB相似,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由。
(4)M是拋物線上一點(diǎn),點(diǎn)N在 軸,是否存在點(diǎn)N,使得以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝即將到來的2018年國慶節(jié),某校舉行了書法比賽,賽后整理了參賽同學(xué)的成績,并制作了如下兩幅不完整的統(tǒng)計(jì)圖表
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x<100 | 20 | 0.1 |
請(qǐng)根據(jù)以上圖表提供的信息,解答下列問題:
(1)這次共調(diào)查了 名學(xué)生;表中的數(shù)m= ,n= .
(2)請(qǐng)補(bǔ)全頻數(shù)直方圖;
(3)若繪制扇形統(tǒng)計(jì)圖,則分?jǐn)?shù)段60≤x<70所對(duì)應(yīng)的扇形的圓心角的度數(shù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com