【題目】已知數(shù)軸上點(diǎn)與點(diǎn)之間的距的距離為個單位長度,點(diǎn)在原點(diǎn)的左側(cè),到原點(diǎn)的距離為個單位長度,點(diǎn)在點(diǎn)的右側(cè),點(diǎn)表示的數(shù)與點(diǎn)表示的數(shù)互為相反數(shù),動點(diǎn)從點(diǎn)出發(fā),以每秒個單位長度的速度向點(diǎn)移動,設(shè)移動時間為秒.
(1)點(diǎn)表示的數(shù)為 ,點(diǎn)表示的數(shù)為 ,點(diǎn)表示的數(shù)為 .
(2)用含的代數(shù)式分別表示點(diǎn)到點(diǎn)和點(diǎn)的距離: , .
(3)當(dāng)點(diǎn)運(yùn)動到點(diǎn)時,點(diǎn)從點(diǎn)出發(fā),以每秒個單位長度的速度向點(diǎn)運(yùn)動,點(diǎn)到達(dá)點(diǎn)后,立即以同樣的速度返回點(diǎn),在點(diǎn)開始運(yùn)動后,當(dāng)兩點(diǎn)之間的距離為個單位長度時,求此時點(diǎn)表示的數(shù).
【答案】(1),,;(2),;(3),,,
【解析】
(1)根據(jù)點(diǎn)在原點(diǎn)的左側(cè),到原點(diǎn)的距離為個單位長度,可得知A表示的數(shù)為,然后結(jié)合數(shù)軸的性質(zhì)以及相反數(shù)的性質(zhì)進(jìn)一步求解即可;
(2)根據(jù)題意可得PA相當(dāng)于P點(diǎn)的運(yùn)動距離,而PC可由ABPA計(jì)算即可;
(3)根據(jù)題意,分Q點(diǎn)到C點(diǎn)之前與到達(dá)C點(diǎn)返回兩種情況進(jìn)一步討論即可.
(1)∵點(diǎn)在原點(diǎn)的左側(cè),到原點(diǎn)的距離為個單位長度,
∴點(diǎn)A表示的數(shù)為,
∵點(diǎn)與點(diǎn)之間的距的距離為個單位長度,點(diǎn)在點(diǎn)的右側(cè),
∴點(diǎn)表示的數(shù)為,
∵點(diǎn)表示的數(shù)與點(diǎn)表示的數(shù)互為相反數(shù),
∴點(diǎn)表示的數(shù)為12,
故答案為:,,;
(2)由題意可得:PA相當(dāng)于P點(diǎn)的運(yùn)動距離,
∴PA=,
∴PC=ABPA=,
故答案為:,;
(3)設(shè)、兩點(diǎn)之間的距離為時,點(diǎn)的運(yùn)動時間為秒,
此時點(diǎn)表示的數(shù)是.
當(dāng)時,秒時點(diǎn)表示的數(shù)是,
則,或,
解得m=7或5,
∴此時點(diǎn)表示的數(shù)是或;
當(dāng)時,秒后點(diǎn)表示的數(shù)是,
則,或=2,
解得或,
∴此時點(diǎn)表示的數(shù)是或.
綜上,當(dāng)、兩點(diǎn)之間的距離為時,此時點(diǎn)表示的數(shù)可以是,,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A1,A2,…,An均在直線y=x-1上,點(diǎn)B1,B2,…,Bn均在雙曲線y=-上,并且滿足A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點(diǎn)An的橫坐標(biāo)為an(n為正整數(shù)).若a1=-1,則a2018=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,公共汽車行駛在筆直的公路上,這條路上有四個站點(diǎn),每相鄰兩站之間的距離為千米,從站開往站的車稱為上行車,從站開往站的車稱為下行車.第一班上行車、下行車分別從站、站同時發(fā)車,相向而行,且以后上行車、下行車每隔分鐘分別在站同時發(fā)一班車,乘客只能到站點(diǎn)上、下車(上、下車的時間忽略不計(jì)),上行車、 下行車的速度均為千米/小時.
第一班上行車到站、第一班下行車到站分別用時多少?
第一班上行車與第一班下行車發(fā)車后多少小時相距千米?
一乘客在兩站之間的處,剛好遇到上行車,千米,他從處以千米/小時的速度步行到站乘下行車前往站辦事.
①若千米,乘客從處到達(dá)站的時間最少要幾分鐘?
②若千米,乘客從處到達(dá)站的時間最少要幾分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如 圖,△ACB和△E CD都是等腰直角三角形,A,C,D三點(diǎn)在同一直線上,連接BD,AE,并延長AE交BD于F.
(1)求證:△ACE≌△BCD;
(2)直線AE與BD互相垂直嗎?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)如果AB=4,AE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角系xOy中,直線AB交x軸正半軸于點(diǎn)A,交y軸負(fù)半軸于點(diǎn)B,B點(diǎn)的坐標(biāo)為B(0,﹣6),點(diǎn)C在線段OA上,將△ABC沿直線BC翻折,點(diǎn)A與y軸上的點(diǎn)D(0,4),恰好重合.
(1)求A點(diǎn)、C點(diǎn)的坐標(biāo);
(2)在y軸是否存在一點(diǎn)H,使得△HAB和△ABC的面積相等?若存在,求出滿足條件的點(diǎn)H的坐標(biāo);若不存在,請說明理由
(3)已知點(diǎn)E(0,3),P是直線BC上一動點(diǎn)(P不與B重合),連接PD、PE,求△PDE周長的最小值,并求出此BP長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了開展“陽光體育運(yùn)動”,計(jì)劃購買籃球與足球共個,已知每個籃球的價(jià)格為元,每個足球的價(jià)格為元
(1)若購買這兩類球的總金額為元,求籃球和足球各購買了多少個?
(2)元旦期間,商家給出藍(lán)球打九折,足球打八五折的優(yōu)惠價(jià),若購買這種籃球與足球各個,那么購買這兩類球一共需要多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形中,點(diǎn)是上一點(diǎn),過點(diǎn)作交射線于點(diǎn),連結(jié).
(1)已知點(diǎn)在線段上.
①若,求度數(shù);
②求證:.
(2)已知正方形邊長為,且,請直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平行四邊形中,點(diǎn)是對角線的中點(diǎn),過點(diǎn)與,分別相交于,,過點(diǎn)與,分別相交于點(diǎn),,連接,,,.
(1)求證:四邊形是平行四邊形;
(2)如圖2,若,,在不添加任何輔助的情況下,請直接寫出圖2中與四邊形面積相等的所有的平行四邊形(四邊形除外).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com