【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=2,以AB為直徑的圓交BC于D,則圖中陰影部分的面積為( )
A.1
B.2
C.1+
D.2﹣
【答案】A
【解析】解:連接AD,OD
∵∠BAC=90°,AB=AC=2
∴△ABC是等腰直角三角形
∵AB是圓的直徑
∴∠ADB=90°
∴AD⊥BC
∴點(diǎn)D是BC的中點(diǎn)
∴OD是△ABC的中位線
∴∠DOA=90°
∴△ODA,△ADC都是等腰直角三角形
∴兩個弓形的面積相等
∴陰影部分的面積=S△ADC= AD2=1.
所以答案是:A.
【考點(diǎn)精析】利用等腰直角三角形和三角形中位線定理對題目進(jìn)行判斷即可得到答案,需要熟知等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②是8×5的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在格點(diǎn)上.按要求在圖①、圖②中以AB、BC為鄰邊各畫一個四邊形ABCD,使點(diǎn)D在格點(diǎn)上.要求所畫兩個四邊形不全等,且同時滿足四邊形ABCD是軸對稱圖形,點(diǎn)D到∠ABC兩邊的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對七、八、九年級的學(xué)生進(jìn)行體育水平測試,成績評定為優(yōu)秀、良好、合格、不合格四個等第.為了解這次測試情況,學(xué)校從三個年級隨機(jī)抽取200名學(xué)生的體育成績進(jìn)行統(tǒng)計分析.相關(guān)數(shù)據(jù)的統(tǒng)計圖、表如下:
各年級學(xué)生成績統(tǒng)計表 | ||||
優(yōu)秀 | 良好 | 合格 | 不合格 | |
七年級 | a | 20 | 24 | 8 |
八年級 | 29 | 13 | 13 | 5 |
九年級 | 24 | b | 14 | 7 |
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計表中,a的值為 , b的值為;
(2)在扇形統(tǒng)計圖中,八年級所對應(yīng)的扇形圓心角為度;
(3)若該校三個年級共有2000名學(xué)生參加考試,試估計該校學(xué)生體育成績不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,已知A(6,0),B(8,6),將線段OA平移至CB,點(diǎn)D在x軸正半軸上(不與點(diǎn)A重合),連接OC、AB、CD、BD.
(1)寫出點(diǎn)C的坐標(biāo);
(2)當(dāng)△ODC的面積是△ABD的面積的3倍時,求點(diǎn)D的坐標(biāo);
(3)設(shè)∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為10cm,點(diǎn)D從點(diǎn)C出發(fā)沿CA向點(diǎn)A運(yùn)動,點(diǎn)E從點(diǎn)B出發(fā)沿AB的延長線BF向右運(yùn)動,已知點(diǎn)D,E都以1cm/s的速度同時開始運(yùn)動,運(yùn)動過程中DE與BC相交于點(diǎn)P,點(diǎn)D運(yùn)動到點(diǎn)A后兩點(diǎn)同時停止運(yùn)動.
(1)當(dāng)△ADE是直角三角形時,求D,E兩點(diǎn)運(yùn)動的時間;
(2)求證:在運(yùn)動過程中,點(diǎn)P始終是線段DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】與在平面直角坐標(biāo)系中的位置如圖
(1)分別寫出下列各點(diǎn)的坐標(biāo):A′_____;B′______;C′_____.
(2)若點(diǎn)是內(nèi)部一點(diǎn),則平移后內(nèi)的對應(yīng)點(diǎn)的坐標(biāo)為_______.
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村為了盡早擺脫貧窮落后的現(xiàn)狀,積極響應(yīng)國家號召,15位村民集資8萬元,承包了一些土地種植有機(jī)蔬菜和水果,種這兩種作物每公頃需要人數(shù)和投入資金如下表:
作物種類 | 每公頃所需人數(shù)/人 | 每公頃投入資金/萬元 |
蔬菜 | 4 | 2 |
水果 | 5 | 3 |
在現(xiàn)有條件下,這15位村民應(yīng)承包多少公頃土地,怎樣安排能使每人都有事可做,并且資金正好夠用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列網(wǎng)格中建立平面直角坐標(biāo)系如圖,每個小正方形的邊長均為1個單位長度.已知A(1,1)、B(3,4)和C(4,2).
(1)在圖中標(biāo)出點(diǎn)A、B、C.
(2)將點(diǎn)C向下平移3個單位到D點(diǎn),將點(diǎn)A先向左平移3個單位,再向下平移1個單位到E點(diǎn),在圖中標(biāo)出D點(diǎn)和E點(diǎn).
(3)求△EBD的面積S△EBD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com