【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于A、B兩點,與y軸交于點C.

(1)求B、C兩點的坐標;
(2)在該拋物線的對稱軸上是否存在點P,使得△PAC的周長最。咳舸嬖,求出點P的坐標;若不存在,請說明理由;
(3)拋物線在第二象限內(nèi)是否存在一點Q,使△QBC的面積最大?,若存在,求出點Q的坐標及△QBC的面積最大值;若不存在,請說明理由.

【答案】
(1)

解:∵拋物線y=﹣x2﹣2x+3與x軸交于A,B兩點,與y軸交于點C,

當y=0時,即﹣x2﹣2x+3=0,

解得:x1=﹣3,x2=1,

當x=0時,y=3,

∴B(﹣3,0)、C(0,3)


(2)

解:存在;

如圖1,∵拋物線的解析式為:y=﹣x2﹣2x+3,

∴拋物線的對稱軸x=﹣1,C(0,3)

∴C′(﹣2,3),

設(shè)直線AC′的解析式為:y=kx+b,

∵A(1,0),

解得 ,

∴直線AC′的解析式為:y=﹣x+1,

把x=﹣1代入直線AC′的解析式y(tǒng)=﹣x+1,得y=2,

∴P(﹣1,2)


(3)

解:存在;

如圖2,設(shè)Q(m,﹣m2﹣2m+3),過Q作QP⊥x軸于P,

∴OP=﹣m,PQ=﹣m2﹣2m+3,BP=3+m,

∴SPBQ= BPPQ= (3+m)(﹣m2﹣2m+3),S四邊形QPOC= (OC+PQ)OP= (3﹣m2﹣2m+3)(﹣m),SBOC= OBOC= ×3×3= ,

∴SPBC=SPBQ+S四邊形QPOC﹣SBOC=﹣ m2 m,

即SPBC=﹣ m2 m=﹣ (m+ 2+

∴當m=﹣ 時,△QBC的面積最大,最大值為 ;

∴Q(﹣ ).


【解析】(1)根據(jù)拋物線與x軸的交點坐標與系數(shù)的關(guān)系即可求得;(2)根據(jù)軸對稱的性質(zhì)先找出C的對稱點C′,然后連接AC′即可找到P點,最后根據(jù)A、C′的坐標求得直線AC′的解析式,即可求得P的坐標;(3)根據(jù)SQBC=SQBP+S四邊形QPOC﹣SBOC即可求得解析式,根據(jù)解析式即可求得求出點Q的坐標及△QBC的面積最大值;
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識,掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】十八世紀瑞士數(shù)學家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式請你觀察下列幾種簡單多面體模型,解答下列問題:

(1)根據(jù)上面多面體的模型,完成表格中的空格:

多面體

頂點數(shù)(V

面數(shù)(F

棱數(shù)(E

四面體

4

4

長方體

8

12

正八面體

8

12

正十二面體

20

12

30

(2)你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是E=________

(3)一個多面體的面數(shù)比頂點數(shù)大8,棱數(shù)為30,則這個多面體的面數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某茶葉廠用甲,乙,丙三臺包裝機分裝質(zhì)量為200g的茶葉,從它們各自分裝的茶葉中分別隨機抽取了20盒,得到它們的實際質(zhì)量的方差如下表所示:

甲包裝機

乙包裝機

丙包裝機

方差

10.96

5.96

12.32

根據(jù)表中數(shù)據(jù),可以認為三臺包裝機中,包裝茶葉的質(zhì)量最穩(wěn)定是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=(m﹣2)xn1+3是關(guān)于x的一次函數(shù),則m,n的值為( 。

A. m≠2,n=2 B. m=2,n=2 C. m≠2,n=1 D. m=2,n=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD是正方形,∠PAQ=45°,將∠PAQ繞著正方形的頂點A旋轉(zhuǎn),使它與正方形ABCD的兩個外角∠EBC和∠FDC的平分線分別交于點MN,連接MN

(1)求證:△ABM∽△NDA

(2)連接BD,當∠BAM的度數(shù)為多少時,四邊形BMND為矩形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩地相距200km快車速度為120 ,慢車速度為80 ,慢車從甲地出發(fā),快車從乙地出發(fā),

1)如果兩車同時出發(fā),相向而行,出發(fā)后幾時兩車相遇?相遇時離甲地多遠?

2)如果兩車同時出發(fā),同向(從乙開始向甲方向)而行,出發(fā)后幾時兩車相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知M9x24x3N5x24x2,則MN的大小關(guān)系是(   )

A. M>N B. MN C. M<N D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系xOy中,直線AC分別交坐標軸于A,C(8,0)兩點,AB∥x軸,B(6,4).

(1)求過B,C兩點的拋物線y=ax2+bx+4的表達式;
(2)點P從C點出發(fā)以每秒1個單位的速度沿線段CO向O點運動,同時點Q從A點出發(fā)以相同的速度沿線段AB向B點運動,其中一個動點到達端點時,另一個也隨之停止運動.設(shè)運動時間為t秒.當t為何值時,四邊形BCPQ為平行四邊形;
(3)若點M為直線AC上方的拋物線上一動點,當點M運動到什么位置時,△AMC的面積最大?求出此時M點的坐標和△AMC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩倉庫分別有水泥20噸和30噸,C、D兩工地分別需要水泥15噸和35噸.已知從A、B倉庫到C、D工地的運價如下表:

C工地

D工地

A倉庫

每噸15

每噸12

B倉庫

每噸10

每噸9

1若從A倉庫運到C工地的水泥為噸,則用含x的代數(shù)式表示從A倉庫運到D工地的水泥為   噸,從B倉庫將水泥運到D工地的運輸費用為   元;

2)求把全部水泥從A、B兩倉庫運到CD兩工地的總運輸費(用含的代數(shù)式表示并化簡);

3)如果從A倉庫運到C工地的水泥為15噸時,那么總運輸費為多少元?

查看答案和解析>>

同步練習冊答案