在拋物線y=上的一個(gè)點(diǎn)是( )
A.(1,O)
B.(2,2)
C.(4,0)
D.(0,-4)
【答案】分析:把四個(gè)點(diǎn)的坐標(biāo)分別代入拋物線y=中進(jìn)行計(jì)算,若滿足解析式,則此點(diǎn)在拋物線y=上.
解答:解:A、當(dāng)x=1時(shí),y==-4=-≠0,則點(diǎn)(1,0)不在拋物線上,所以A選項(xiàng)錯(cuò)誤;
B、當(dāng)x=2時(shí),y==×4-4=--2≠2,則點(diǎn)(2,2)不在拋物線上,所以B選項(xiàng)錯(cuò)誤;
C、當(dāng)x=4時(shí),y==×16-4=4≠0,則點(diǎn)(4,0)不在拋物線上,所以C選項(xiàng)錯(cuò)誤;
D、當(dāng)x=0時(shí),y==0-4=-4,則點(diǎn)(0,-4)在拋物線上,所以D選項(xiàng)錯(cuò)誤.
故選D.
點(diǎn)評(píng):本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征:二次函數(shù)y=ax2+bx+c的圖象上的點(diǎn)的坐標(biāo)滿足解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,拋物線C1:y=ax2+bx+c的開口向下,頂點(diǎn)為D點(diǎn),與y軸交于點(diǎn),且經(jīng)過A(-1,0),B(3,0)兩點(diǎn),若△ABD的面積為8.
①求拋物線C1的解析式;
②Q是拋物線C1上的一個(gè)動(dòng)點(diǎn),當(dāng)△QBC的內(nèi)心落在x軸上時(shí),求此時(shí)點(diǎn)Q的坐標(biāo);
(2)如圖2,將(1)中的拋物線C1向右平移t(t>0)個(gè)單位長度,得到拋物線C2,頂點(diǎn)為E,拋物線C1、C2相交于P點(diǎn),設(shè)△PDE的面積為S,判斷
St3
是否為定值?請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=a(x-1)2-
4
3
3
經(jīng)過△ABC的三個(gè)頂點(diǎn),已知點(diǎn)A(-1,0),點(diǎn)C在y軸上,且BC∥x軸.
(1)求a的值;
(2)判斷△ABC的形狀,并說明理由;
(3)探究:
①若點(diǎn)P是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求△PAC周長的最小值;
②若點(diǎn)P是拋物線對(duì)稱軸且在直線BC上方的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)P使△PAB是等腰三角形.若存在,直接寫出所有符合條件的點(diǎn)P坐標(biāo);不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,過點(diǎn)A的直線與拋物線交于點(diǎn)E,與y軸交于點(diǎn)F,且點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)E的坐標(biāo)為(2,3).
(1)求拋物線的解析式;
(2)若點(diǎn)G為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),H為x軸上一點(diǎn),當(dāng)以點(diǎn)C、G、H、F四點(diǎn)所圍成的四邊形的周長最小時(shí),求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);
(3)設(shè)直線AE與拋物線對(duì)稱軸的交點(diǎn)為P,M為直線AE上的任意一點(diǎn),過點(diǎn)M作MN∥PD交拋物線于點(diǎn)N,以P、D、M、N為頂點(diǎn)的四邊形能否為平行四邊形?若能,請(qǐng)求點(diǎn)M的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

在拋物線y=數(shù)學(xué)公式上的一個(gè)點(diǎn)是


  1. A.
    (1,O)
  2. B.
    (2,2)
  3. C.
    (4,0)
  4. D.
    (0,-4)

查看答案和解析>>

同步練習(xí)冊(cè)答案