如圖,F(xiàn)為正方形ABCD的對角線AC上一點,F(xiàn)E⊥AD于點E,M為CF的中點.
(1)求證:MB=MD;
(2)求證:ME=MB.

【答案】分析:(1)根據(jù)正方形的性質(zhì)及SAS定理可直接求出△BCM≌△DCM,利用全等三角形的性質(zhì)求解即可;
(2)取DE的中點N,連接MN,根據(jù)梯形的中位線定理可求出MN∥CD,MN⊥DE,可求出MN是線段DE的垂直平分線,即△DEM是等腰三角形,由等腰三角形的性質(zhì)即可解答.
解答:證明:(1)∵四邊形ABCD是正方形,
∴BC=DC,∠BCM=∠DCM,(1分)
又MC=MC,∴△BCM≌△DCM,
∴MB=MD;(4分)

(2)在直角梯形DEFC中,CD∥FE,
取DE的中點N,連接MN,
∵M(jìn)為CF的中點,∴MN∥CD,(6分)
又CD⊥DE,∴MN⊥DE,
∴MN是線段DE的垂直平分線,
∴MD=ME,(7分)
由(1)知,MB=MD,∴ME=MB.(8分)
點評:此題比較簡單,考查的是正方形的性質(zhì)及等腰三角形的判定定理,解答此題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出直角梯形的中位線求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,E為正方形ABCD的邊AB上一點(不含A、B點),F(xiàn)為BC邊的延長線上一點,△DAE旋轉(zhuǎn)后能與△DCF重合.
(1)旋轉(zhuǎn)中心是哪一點?
(2)旋轉(zhuǎn)了多少度?
(3)如果連接EF,那么△DEF是怎樣的三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,A(0,3),B(1,0),直線OP交AB于N,DC于M,點H從原點O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運動,同時,點R從O出發(fā)沿精英家教網(wǎng)OM方向以
2
個單位每秒速度運動,運動時間為t.求:
(1)C的坐標(biāo)為
 
;
(2)當(dāng)t為何值時,△ANO與△DMR相似?
(3)△HCR面積S與t的函數(shù)關(guān)系式;并求以A、B、C、R為頂點的四邊形是梯形時t的值及S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,G為正方形ABCD的對稱中心,A(0,2),B(1,0),直線OG交AB于E,DC于F,點Q從A出發(fā)沿A→B→C的方向以
5
個單位每秒速度運動,同時,點P從O出發(fā)沿OF方精英家教網(wǎng)向以
2
個單位每秒速度運動,Q點到達(dá)終點,點P停止運動,運動時間為t.求:
(1)求G點的坐標(biāo).
(2)當(dāng)t為何值時,△AEO與△DFP相似?
(3)求△QCP面積S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,正方形ABCD的邊長為
10
,tan∠ABO=3,直線OP交AB于N,DC于M,點H從原點O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運動,同時,點R從O出發(fā)沿OM方向以
2
個單位每秒速度運動,運動時間為t,求:
(1)直接寫出A、D、P的坐標(biāo);
(2)求△HCR面積S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時,△ANO與△DMR相似?
(4)求以A、B、C、R為頂點的四邊形是梯形時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)如圖,O為正方形ABCD對角線AC上一點,以O(shè)為圓心,OA長為半徑的⊙0與BC相切于點M,與AB、AD分別相交于點E、F.
(1)求證:CD與⊙0相切;
(2)若⊙0的半徑為
2
,求正方形ABCD的邊長.

查看答案和解析>>

同步練習(xí)冊答案