精英家教網 > 初中數學 > 題目詳情
一個正方形和一個正六邊形的外接圓半徑相等,則此正方形與正六邊形的面積之比為
4
3
:9
4
3
:9
分析:根據題意畫出圖形,設出圓的半徑,再由正多邊形及直角三角形的性質求解即可.
解答:解:設圓的半徑為R,
如圖1,
連接OB、OC,過O作OE⊥BC于E,
則△OBE是等腰直角三角形,
2BE2=OB2,即BE=
2
2
R,
故BC=
2
R;
如圖2,
連接OA、OB,過O作OG⊥AB,
則△OAB是等邊三角形,
故AG=OA•cos60°=
1
2
R,AB=2AG=R,
∴OG=
3
2
R,
∴此正方形的面積為:
2
2
R=2R2,
正六邊形的面積為:6×
1
2
×R×
3
2
R=
3
3
2
R2,
∴此正方形與正六邊形的面積之比為:2R2
3
3
2
R2=4
3
:9.
故答案為:4
3
:9.
點評:本題考查的是圓內接正方形及正六邊形的性質,根據題意畫出圖形,作出輔助線構造出直角三角形是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網精英家教網(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數分別是1至4這四個數字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數作為直角坐標系中P點的坐標(第一次的點數作橫坐標,第二次的點數作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為
34
?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數分別是1至4這四個數字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數作為直角坐標系中P點的坐標(第一次的點數作橫坐標,第二次的點數作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為數學公式?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數學 來源:第25章《圖形的變換》中考題集(04):25.1 平移變換(解析版) 題型:解答題

(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數分別是1至4這四個數字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數作為直角坐標系中P點的坐標(第一次的點數作橫坐標,第二次的點數作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數學 來源:第33章《概率的計算和估計》中考題集(31):33.4 幾何概率(解析版) 題型:解答題

(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數分別是1至4這四個數字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數作為直角坐標系中P點的坐標(第一次的點數作橫坐標,第二次的點數作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數學 來源:第25章《概率初步》中考題集(23):25.2 用列舉法求概率(解析版) 題型:解答題

(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數分別是1至4這四個數字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數作為直角坐標系中P點的坐標(第一次的點數作橫坐標,第二次的點數作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

同步練習冊答案