【題目】如圖,P是等邊三角形ABC內(nèi)的一點,且PA=3,PB=3,PC=5,BC為邊在△ABC外作△BQC≌△BPA,連接PQ,則以下結(jié)論錯誤的是(

A. △BPQ是等邊三角形 B. △PCQ是直角三角形 C. ∠APB=150° D. ∠APC=135°

【答案】D

【解析】

∵△ABC是等邊三角形,
∴∠ABC=60°,
∵△BQC≌△BPA,
∴∠BPA=∠BQCBP=BQ=4,QC=PA=3,∠ABP=∠QBC,
∴∠PBQ=PBC+∠CBQ=PBC+∠ABP=∠ABC=60°,
∴△BPQ是等邊三角形,
PQ=BP=4,
PQ2+QC2=42+32=25,PC2=52=25,
PQ2+QC2=PC2,
∴∠PQC=90°,即PQC是直角三角形,
∵△BPQ是等邊三角形,
∴∠BOQ=∠BQP=60°,
∴∠BPA=∠BQC=60°+90°=150°,
∴∠APC=360°-150°-60°-∠QPC=150°-∠QPC,
∵∠PQC=90°,PQ≠Q(mào)C,
∴∠QPC≠45°,
APC≠135°,
選項A、B、C正確,選項D錯誤.
故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高2米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有25米的距離(B,F(xiàn),C在一條直線上).

(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈ ,cos22° ,tan22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AB=BC=2,將△ABC繞點C順時針旋轉(zhuǎn)60°,得到△DEC,則AE的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形的一邊長是9cm,那么這個平行四邊形的兩條對角線的長可以是(

A. 4cm6cm B. 6cm8cm C. 8cm10cm D. 10cm12cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,∠BCD的平分線CFABF,∠ADC的平分線DG交邊ABG.

(1)線段AFGB相等嗎?

(2)當四邊形ABCD滿足什么條件時,△EFG為等腰直角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在紀念中國抗日戰(zhàn)爭勝利70周年之際,某公司決定組織員工觀看抗日戰(zhàn)爭題材的影片,門票有甲乙兩種,甲種票比乙種票每張貴6元;買甲種票10張,乙種票15張共用去660元.
(1)求甲、乙兩種門票每張各多少元?
(2)如果公司準備購買35張門票且購票費用不超過1000元,那么最多可購買多少張甲種票?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)如圖,△ABC中,AB=ACAB的垂直平分線交邊ABD點,交邊ACE點,若△ABC△EBC的周長分別是40cm,24cm,則AB= cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABCBA=BC,點DAB延長線上一點,DF⊥ACFBCE,

求證:△DBE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBECD都是等邊三角形,點A、D、E在同一直線上,連接BE.

(1)求證:AD=BE;

(2)求∠AEB的度數(shù).

查看答案和解析>>

同步練習冊答案