如圖,P為⊙O外一點,PA、PB分別切⊙O于A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=5,則△PCD的周長為      .
10

試題分析:因為P為圓外一點,PA和PB為圓的切線,所以,同理,,,所以,所以,所以
點評:本題關(guān)鍵在于要了解圓外一點引出的圓的兩條切線,這兩條切線的長度相等
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(6分)如圖,在△ABC中,點OAB上,以O為圓心的圓經(jīng)過AC兩點,交AB于點D,已知2∠A +∠B =

(1)求證:BC是⊙O的切線;
(2)若OA=6,BC=8,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點,點C在⊙O上,且∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于另一點Q,如果QP=QO,則∠OCP=         

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖△ABC的內(nèi)接圓于⊙O,∠C=45°,AB=4,則⊙O 的半徑為(    )
A.B.4 C.D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題14分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.

(1)請你補全這個輸水管道的圓形截面;
(2)若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

和☉的半徑是方程的兩根,圓心距=4,則☉和☉的位置關(guān)系是
A.相離B.外離C.相交D.內(nèi)含

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB切⊙O于點B,延長AO交⊙O于點C,連接BC.若∠A=40°,則∠C=( 。

A. 20°         B. 25°          C. 40°           D. 50°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某種在同一平面進行傳動的機械裝置如圖1,圖2是它的示意圖.其工作原理是:滑塊Q在平直滑道l上可以左右滑動,在Q滑動的過程中,連桿PQ也隨之運動,并且PQ帶動連桿OP繞固定點O擺動.在擺動過程中,兩連桿的接點P在以OP為半徑的⊙O上運動.數(shù)學興趣小組為進一步研究其中所蘊含的數(shù)學知識,過點O作OH ⊥l于點H,并測得OH = 4 dm,PQ = 3 dm,OP = 2 dm.解決問題

(1)點Q與點O間的最小距離是      dm;點Q與點O間的最大距離是      dm;點Q在l上滑到最左端的位置與滑到最右端位置間的距離是      分米.
(2)如圖3,小明同學說:“當點Q滑動到點H的位置時,PQ與⊙O是相切的.”你認為他的判斷對嗎?為什么?

(3)①小麗同學發(fā)現(xiàn):“當點P運動到OH上時,點P到l的距離最。笔聦嵣,還存在著點P到l距離最大的位置,此時,點P到l的距離是      dm;
②當OP繞點O左右擺動時,所掃過的區(qū)域為扇形,求這個扇形面積最大時圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,、的切線,切點分別為、,上一點,若, 則( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案