【題目】如圖,在Rt△ABC中,∠ABC=90°,點F為AC中點,⊙O經(jīng)過點B,F(xiàn),且與AC交于點D,與AB交于點E,與BC交于點G,連結(jié)BF,DE,弧EFG的長度為(1+)π.
(1)求⊙O的半徑;
(2)若DE∥BF,且AE=a,DF=2+﹣a,請判斷圓心O和直線BF的位置關(guān)系,并說明理由.
【答案】(1)r=1+;(2)圓心O在直線BF上.理由見解析.
【解析】
(1)設(shè)⊙O的半徑為r,再根據(jù)弧長公式即可得出結(jié)論;
(2)先根據(jù)DE∥BF得出∠ADE=∠AFB,再根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠AFB+∠DEB=180°,進而得出AF的長.在Rt△ABC中,根據(jù)直角三角形的性質(zhì)求出BF的長,再由B、F都在⊙O上即可得出結(jié)論.
(1)設(shè)⊙O的半徑為r,
∵∠ABC=90°
∴弧EFG所對的圓心角的度數(shù)為180°,
∴=(1+)π,即r=1+;
(2)答:圓心O在直線BF上.
理由如下:
∵DE∥BF,
∴∠ADE=∠AFB.
∵四邊形DEBF是⊙O的內(nèi)接四邊形,
∴∠AFB+∠DEB=180°.
∵∠AED+∠DEB=180°,
∴∠AFB=∠AED,
∴∠ADE=∠AED,
∴AD=AE=a.
∵DF=2+﹣a,
∴AF=AD+DF=2+.
在Rt△ABC中,∠ABC=90°且F為AC中點,
∴BF=AF=2+.
∵r=1+,
∴BF=2r.
∵B、F都在⊙O上,
∴BF為⊙O直徑,
∴點O在直線BF上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:直線y=ax+b與直線y=bx+a互為“友好直線”.如:直線y=2x+1與直線y=x+2互為“友好直線”.
(1)點M(m,2)在直線y=-x+4的“友好直線”上,則m=________;
(2)直線y=4x+3上的一點M(m,n)又是它的“友好直線”上的點,求點M的坐標;
(3)對于直線y=ax+b上的任意一點M(m,n),都有點N(2m,m-2n)在它的“友好直線”上,求直線y=ax+b的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師將個黑球和若干個白球放入一個不透明的口袋并攪勻,讓若干學(xué)生進行摸球?qū)嶒,每次摸出一個球(有放回),下表是活動進行中的一組統(tǒng)計數(shù)據(jù).
摸球的次數(shù) | ||||||
摸到黑球的次數(shù) | ||||||
摸到黑球的頻率 |
補全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計從袋中摸出一個球是黑球的概率是________(精確到0.01);
估算袋中白球的個數(shù);
在的條件下,若小強同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計算他兩次都摸出白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,正方形ABCD中,點E,F分別在邊BC,CD上,∠EAF=45°,延長CD到點G,使DG=BE,連結(jié)EF,AG.求證:EF=FG.
(2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、P、B、C是⊙O上的四點,∠APC=∠CPB=60°,過點C作CM∥BP交PA的延長線于點M.
(1)求證:△ACM≌△BCP;
(2)若PA=1,PB=2,求△PCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[問題情境]
已知矩形的面積為一定值1,當(dāng)該矩形的一組鄰邊分別為多少時,它的周長最小?最小值是多少?
[數(shù)學(xué)模型]
設(shè)該矩形的一邊長為x,周長為L,則L與x的函數(shù)表達式為 .
[探索研究]
小彬借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).
(1)結(jié)合問題情境,函數(shù)的自變量x的取值范圍是 ,
如表是y與x的幾組對應(yīng)值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①直接寫出m的值;
②畫出該函數(shù)圖象,結(jié)合圖象,得出當(dāng)x= 時,y有最小值,y的最小值為 .
[解決問題]
(2)直接寫出“問題情境”中問題的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中,給出下列條件:① ② ③ ④
其中能判定四邊形是平行四邊形的組合是________或 ________或_________或_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)和在第一象限內(nèi)的圖象如圖所示,點是的圖象上一動點,作軸于點,交的圖象于點,作軸于點,交的圖象于點,給出如下結(jié)論:①與的面積相等;②與始終相等;③四邊形的面積大小不會發(fā)生變化;④,其中正確的結(jié)論序號是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1中的三種情況所示,對于平面內(nèi)的點M,點N,點P,如果將線段PM繞點P順時針旋轉(zhuǎn)90°能得到線段PN,就稱點N是點M關(guān)于點P的“正矩點”.
(1)在如圖2所示的平面直角坐標系中,已知,.
①在點P,點Q中,___________是點S關(guān)于原點O的“正矩點”;
②在S,P,Q,M這四點中選擇合適的三點,使得這三點滿足:
點_________是點___________關(guān)于點___________的“正矩點”,寫出一種情況即可;
(2)在平面直角坐標系中,直線與x軸交于點A,與y軸交于點B,點A關(guān)于點B的“正矩點”記為點C,坐標為.
①當(dāng)點A在x軸的正半軸上且OA小于3時,求點C的橫坐標的值;
②若點C的縱坐標滿足,直接寫出相應(yīng)的k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com