【題目】如圖,四邊形ABCD中,AC=a,BD=b,且AC丄BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2…,如此進行下去,得到四邊形AnBnnDn.下列結(jié)論正確的有( 。
①四邊形A2B2C2D2是矩形;
②四邊形A4B4C4D4是菱形;
③四邊形A5B5C5D5的周長是
④四邊形AnBnnDn的面積是.
A.①②B.②③C.②③④D.①②③④
【答案】C
【解析】
①由兩組對邊平行,證明出A1B1C1D1是平行四邊形,再根據(jù)四邊都相等,證明出是菱形.
②由①知四邊形A2B2C2D2是菱形,根據(jù)中位線定理,四邊形A4B4C4D4是菱形.
③根據(jù)中位線性質(zhì)得到每邊長的關(guān)系,從而計算出周長.
④三角形的中位線的性質(zhì)可以推知,每得到一次四邊形,它的面積變?yōu)樵瓉淼囊话?
①連接A1C1,B1D1.
∵在四邊形ABCD中,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四邊形A1B1C1D1是平行四邊形;
∵AC丄BD,∴四邊形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的兩條對角線相等);
∴A2D2=C2D2=C2B2=B2A2(中位線定理),
∴四邊形A2B2C2D2是菱形;
故①錯誤;
②由①知,四邊形A2B2C2D2是菱形;
∴根據(jù)中位線定理知,四邊形A4B4C4D4是菱形;
故②正確;
③根據(jù)中位線的性質(zhì)易知,A5B5=A3B3=×A1B1=××AC,B5C5=B3C3=×B1C1=××BD
∴四邊形A5B5C5D5的周長是2×(a+b)=;
故③正確;
④∵四邊形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四邊形ABCD=ab÷2;
由三角形的中位線的性質(zhì)可以推知,每得到一次四邊形,它的面積變?yōu)樵瓉淼囊话耄?/span>
四邊形AnBnnDn的面積是;
故④正確;
綜上所述,②③④正確.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,AC=BC=2,以斜邊AB上的點O為圓心的圓分別與AC、BC相切于點D、E,與AB分別相交于點G、H,且DG的延長線與CB的延長線交于點F,分析下列四個結(jié)論:①HG=2;②BG=BF;③AH=BG=;④CF= .其中正確的結(jié)論個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△OAB置于平面直角坐標系中,點A的坐標為(0,4),點B的坐標為(3,0),點P是Rt△OAB內(nèi)切圓的圓心.將Rt△OAB沿y軸的正方向作無滑動滾動.使它的三邊依次與x軸重合.第一次滾動后,圓心為P1,第二次滾動后圓心為P2…依次規(guī)律,第2019次滾動后,Rt△OAB內(nèi)切圓的圓心P2019的坐標是( )
A.(673,1)B.(674,1)C.(8076,1)D.(8077,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為評估九年級學(xué)生的學(xué)習(xí)成績狀況,以應(yīng)對即將到來的中考做好教學(xué)調(diào)整,某中學(xué)抽取了部分參加考試的學(xué)生的成績作為樣本分析,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列問題:
(1)求本中學(xué)成績類別為“中”的人數(shù);
(2)求出扇形圖中,“優(yōu)”所占的百分比,并將條形統(tǒng)計圖補充完整;
(3)該校九年級共有1000人參加了這次考試,請估算該校九年級共有多少名學(xué)生的數(shù)學(xué)成績達到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń夥匠獭?/span>
(1)4(x-3) =36
(2)x2-4x+1=0.
(3)-7x+6=0
(4)
(5)(y-1)2+2y(1-y)=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙O的直徑, D、T是圓上的兩點,且AT平分∠BAD,過點T作AD延長線的垂線PQ,垂足為C.
(1)求證:PQ是⊙O的切線;
(2)若⊙O的半徑為2,,求弦AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(1,1),B(3,1),C(3,﹣1),D(1,﹣1)構(gòu)成正方形ABCD,以AB為邊做等邊△ABE,則∠ADE和點E的坐標分別為( 。
A. 15°和(2,1+)
B. 75°和(2,﹣1)
C. 15°和(2,1+)或75°和(2,﹣1)
D. 15°和(2,1+)或75°和(2,1﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).
(1)如圖,當(dāng)∠APB=45°時,求AB及PD的長;
(2)當(dāng)∠APB變化,且其它條件不變時,求PD的最大值,及相應(yīng)∠APB的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com