21、若當x=1時,代數(shù)式ax3+bx+7的值為4,則當x=-1時,代數(shù)式ax3+bx+7值為( 。
分析:本題考查由已知解求出方程中的未知系數(shù),然后將未知系數(shù)和另一解代入代數(shù)式求結(jié)果.
解答:解:將x=1代入ax3+bx+7=4,可得a+b=-3,
當x=-1的時候,代數(shù)式ax3+bx+7=-(a+b)+7=10.
故選D.
點評:由x=1時多項式值為4可得a+b的值,再將x=-1和a+b作為整體代入可求得此時的多項式值.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

10、若當x=1時,代數(shù)式ax3+bx+1的值為2009,則當x=-1時,代數(shù)式ax3+bx+1的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若當x=4時,代數(shù)式ax2-4x-6a的值為-1;那么當x=-2時,該代數(shù)式的值是
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知代數(shù)式M=(a+b+1)x3+(2a-b)x2+(a+3b)x-5是關(guān)于x的二次多項式.
(1)若關(guān)于y的方程3(a+b)y=ky-8的解是y=4,求k的值;
(2)若當x=2時,代數(shù)式M的值為-39,求當x=-1時,代數(shù)式M的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年山東省泰安市中考數(shù)學試卷(解析版) 題型:選擇題

若當x=1時,代數(shù)式ax3+bx+7的值為4,則當x=-1時,代數(shù)式ax3+bx+7值為( )
A.7
B.12
C.11
D.10

查看答案和解析>>

同步練習冊答案