【題目】八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | 1 |
根據(jù)圖表提供的信息,解答下列問題:
(1)八年級一班有多少名學生?
(2)請補全頻數(shù)分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.
【答案】(1)40(2)15%(3)
【解析】試題分析:(1)用散文的頻數(shù)除以其頻率即可求得樣本總數(shù);
(2)根據(jù)其他類的頻數(shù)和總?cè)藬?shù)求得其百分比即可;
(3)畫樹狀圖得出所有等可能的情況數(shù),找出恰好是丙與乙的情況,即可確定出所求概率.
試題解析:解:(1)∵喜歡散文的有10人,頻率為0.25,
∴m=10÷0.25=40;
(2)在扇形統(tǒng)計圖中,“其他”類所占的百分比為 ×100%=15%,
故答案為:15%;
(3)畫樹狀圖,如圖所示:
所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,
∴P(丙和乙)==.
科目:初中數(shù)學 來源: 題型:
【題目】用白蘿卜等材料做一個正方體,并把正方體表面涂上顏色.
(1)把正方體的棱二等分,然后沿等分線把正方體切開,得到8個小正方體.觀察其中三面被涂色的有a個,如圖①,那么a等于 ;
(2)把正方體的棱三等分,然后沿等分線把正方體切開,得到27個小正方體.觀察其中三面被涂色的有a個,各面都沒有涂色的b個,如圖②,那么a+b= ;
(3)把正方體的棱四等分,然后沿等分線把正方體切開,得到64個小正方體.觀察其中兩面被涂成紅色有c個,各面都沒有涂色的b個,如圖③,那么b+c= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一組數(shù)據(jù):66,66,62,67,63 這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A. 66,62B. 66,66C. 67,62D. 67,66
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列四個命題:
①一組對邊平行且一組對角相等的四邊形是平行四邊形;
②對角線互相垂直且相等的四邊形是正方形;
③順次連接矩形四邊中點得到的四邊形是菱形;
④正五邊形是軸對稱圖形,其中真命題有( )
A.①②③B.①③④C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結(jié)論:
①S△ODB=S△OCA;
②四邊形OAMB的面積不變;
③當點A是MC的中點時,則點B是MD的中點.
其中正確結(jié)論的個數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com