如圖1,在梯形ABCD中,AD∥BC,且BC=12cm,AD=15cm,動點Q由點B沿BC向點C移動,1秒鐘后動點P由點A沿AD向點D移動
(1)若動點P的速度比動點Q的速度大1厘米/秒,且動點Q到達C時,動點P 恰好也到達D.試求動點P、Q的速度.
(2)若動點P的速度為5厘米/秒,動點Q的速度為3厘米/秒,在運動過程中(P與A、D不重合時),AQ與BP交于K,CP與DQ交于N
①當動點Q到達BC中點時,過K作KM∥AD交AB于M,求KM的長;(如圖2)
②在這運動過程中,KN是否會與AD平行?若會,請求出此時為P點出發(fā)后幾秒?若不會,請說明理由.(如圖3)精英家教網
分析:(1)首先設動點Q的速度為x厘米/秒,根據(jù)題意即可得方程:
12
x
=
15
x+1
+1
,解此方程即可求得答案,注意分式方程需檢驗;
(2)①由動點Q到達BC中點,即可求得BQ與AP的值,又由MK∥AD∥BC,根據(jù)平行線分線段成比例定理,即可求得MK的值;
②首先設點P點出發(fā)后t秒時,KN∥AD,然后根據(jù)平行線分線段成比例定理與比例的性質,即可得方程
3(t+1)
5t
=
12-3(t+1)
15-5t
’又由此方程無解,即可證得KN不會平行于AD.
解答:解:(1)設動點Q的速度為x厘米/秒,
根據(jù)題意得:
12
x
=
15
x+1
+1

解得:x1=2,x2=-6(不合題意舍去)
經檢驗x=2是原方程根,
∴動點Q速度為2厘米/秒,動點P速度為3厘米/秒.

(2)①當BQ=
1
2
BC=6cm時,AP=5×(6÷3-1)=5cm,
由MK∥AD∥BC,
BK
KP
=
BQ
AP
=
6
5
,
MK
AP
=
BK
BP
=
6
11

∴MK=
30
11
cm;
②設點P點出發(fā)后t秒時,KN∥AD,
QK
KA
=
BQ
AP
=
3(t+1)
5t
,
QN
ND
=
CQ
DP
=
12-3(t+1)
15-5t
,
若KN∥AD,則
3(t+1)
5t
=
12-3(t+1)
15-5t

解得:
t+1
t
=1
此方程無解,
∴KN不會平行于AD.
點評:此題考查了平行線分線段成比例定理,分式方程的解法,以及比例的性質等知識.此題綜合性較強,難度較大,解題的關鍵是注意比例的性質與比例變形,注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖1,在梯形ABCD中AD∥BC,對角線AC,BD交于點P,則s△PAB=S△PDC,請你用梯形對角線的這一特殊性質,解決下面問題.
在圖2中,點E是△ABC中AB邊上的任意一點,且AE≠BE,過點E畫一條直線,把△ABC分成面積相等的兩部分,保留作圖痕跡,并簡要說明你的方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點.
精英家教網
(1)求等腰梯形DEFG的面積;
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個單位的速度沿BC方向向右運動,直到點D與點C重合時停止.設運動時間為x秒,運動后的等腰梯形為DEF′G′(如圖2).
探究1:在運動過程中,四邊形BDG′G能否是菱形?若能,請求出此時x的值;若不能,請說明理由;
探究2:設在運動過程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,已知:AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
等底等高的三角形面積相等

規(guī)定;若一條直線l把一個圖形分成面積相等的兩個圖形,則稱這樣的直線l叫做這個圖形的等積直線.根據(jù)此定義,在圖1中易知直線為△ABC的等積直線.
(1)如圖2,在矩形ABCD中,直線l經過AD,BC邊的中點M、N,請你判斷直線l是否為該矩形的等積直線
(填“是”或“否”).在圖2中再畫出一條該矩形的等積直線.(不必寫作法)
(2)如圖3,在梯形ABCD中,直線l經過上下底AD、BC邊的中點M、N,請你判斷直線l是否為該梯形的等積直線
(填“是”或“否”).
(3)在圖3中,過M、N的中點O任作一條直線PQ分別交AD,BC于點P、Q,如圖4所示,猜想PQ是否為該梯形的等積直線?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關系?請寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關系?請直接寫出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•樂山)閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點M,N分別在邊AB,DC上,且MN∥AD,記AD=a,BC=b.若
AM
MB
=
m
n
,則有結論:MN=
bm+an
m+n

請根據(jù)以上結論,解答下列問題:
如圖2,圖3,BE,CF是△ABC的兩條角平分線,過EF上一點P分別作△ABC三邊的垂線段PP1,PP2,PP3,交BC于點P1,交AB于點P2,交AC于點P3
(1)若點P為線段EF的中點.求證:PP1=PP2+PP3;
(2)若點P為線段EF上的任意位置時,試探究PP1,PP2,PP3的數(shù)量關系,并給出證明.

查看答案和解析>>

同步練習冊答案