【題目】如圖,在ABC中,AB=AC,AHBC,垂足為H,D為直線BC上一動點(不與點BC重合),在AD的右側(cè)作ADE,使得AE=AD,∠DAE=BAC,連接CE.

(1)當(dāng)D在線段BC上時,求證:BAD≌△CAE

(2)當(dāng)點D運動到何處時,ACDE,并說明理由;

(3)當(dāng)CEAB時,若ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果,無需寫出求解過程).

【答案】(1)見解析(2) 當(dāng)點D運動到BC中點時,ACDE. (3)ADB的度數(shù)是

【解析】

(1)根據(jù)∠DAE=BAC,得到根據(jù)SAS即可判定△BAD≌△CAE;

(2) 當(dāng)點D運動到BC中點時,ACDE.

(3)ABD中最小角為20°,分三種情況進行討論即可.

(1)DAE=BAC,

在△BAD和△CAE,

BAD≌△CAE,

(2) 當(dāng)點D運動到BC中點時,ACDE.

D運動到BC中點,

AB=AC,

BAD≌△CAE

ACDE.

當(dāng)點D運動到BC中點時,ACDE.

(3) ADB的度數(shù)是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,點的坐標(biāo)為,,點為線段上的動點(點不與重合),連接,作,且,過點軸,垂足為點.

1)求證:;

2)猜想的形狀并證明結(jié)論;

3)如圖2,當(dāng)為等腰三角形時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點A2,0)的兩條直線分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.

1)求點B的坐標(biāo);

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ACBCBD,且ACBD,若ABa,則ABD的面積為_____.(用含a的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點上一點,與過點的切線垂直,垂足為點,直線的延長線相交于點平分,交于點

求證:平分;

求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,用配方法求最值.

已知a,b為非負實數(shù),∵a+b﹣2=(2+2﹣2=(20,a+b2,當(dāng)且僅當(dāng)“a=b”時,等號成立.示例:當(dāng)x0時,求y=x++1的最小值;

解:y=(x++12=3,當(dāng)x=,即x=1時,y的最小值為3.

(1)探究:當(dāng)x0時,求y=的最小值;

(2)問題解決:隨著人們生活水平的提高,汽車已成為越來越多家庭的交通工具,假設(shè)某種汽車的購車費用為10萬元,每年應(yīng)繳保險費等各類費用共計0.4萬元,n年的保養(yǎng),維修費用總和為萬元,問這種汽車使用多少年報廢最合算(即使用多少年的年平均費用最少,年平均費用=所有費用:年數(shù)n)?最少年平均費用為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.在直角坐標(biāo)系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標(biāo)為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E.那么點D的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計算下列各題:

2)因式分解:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC2,∠B=∠C40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE40°,DE交線段ACE

1)當(dāng)∠BDA115°時,∠EDC   °,∠DEC   °;點DBC運動時,∠BDA逐漸變   (填“大”或“小”);

2)當(dāng)DC等于多少時,△ABD≌△DCE,請說明理由;

3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案