(2012•東莞)已知:如圖,在四邊形ABCD中,AB∥CD,對(duì)角線AC、BD相交于點(diǎn)O,BO=DO.
求證:四邊形ABCD是平行四邊形.
分析:先根據(jù)AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠DOC即可得出△ABO≌△CDO,故可得出AB=CD,進(jìn)而可得出結(jié)論.
解答:證明:∵AB∥CD,
∴∠ABO=∠CDO,
在△ABO與△CDO中,
∠ABO=∠CDO
BO=DO
∠AOB=∠DOC
,
∴△ABO≌△CDO,
∴AB=CD,
∴四邊形ABCD是平行四邊形.
點(diǎn)評(píng):本題考查的是平行四邊形的判定、全等三角形的判定與性質(zhì),熟知平行四邊形的判定定理是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•東莞)已知三角形兩邊的長(zhǎng)分別是4和10,則此三角形第三邊的長(zhǎng)可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•東莞模擬)如圖,已知AB是⊙O的切線,BC為⊙O的直徑,AC與⊙O交于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),PF⊥BC交BC于點(diǎn)G,交AC于點(diǎn)F
(1)求證:ED是⊙O的切線;
(2)求證:△CFP∽△CPD;
(3)如果CF=1,CP=2,sinA=
45
,求O到DC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•東莞模擬)如圖,已知△ABC中,AB=AC,
(1)請(qǐng)用尺規(guī)作圖的方法找出線段BC的中點(diǎn),
(2)若AB邊長(zhǎng)為6,∠B=30°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•東莞模擬)如圖,九年級(jí)某班同學(xué)要測(cè)量校園內(nèi)旗桿的高度,在地面的C點(diǎn)處用測(cè)角器測(cè)得旗桿頂A點(diǎn)的仰角∠AFE=45°,再沿直線CB后退12m到D點(diǎn),在D點(diǎn)又用測(cè)角器測(cè)得旗桿頂A點(diǎn)的仰角∠AGE=30°;已知測(cè)角器的高度為1.7m,求旗桿AB的高度(結(jié)果保留一位小數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案