【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC為50米,在乙樓頂部A點測得甲樓頂部D點的仰角為37°,在乙樓底部B點測得甲樓頂部D點的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)
科目:初中數(shù)學 來源: 題型:
【題目】實驗室里,水平桌面上有甲、乙、丙三個高都為10cm圓柱形容器(甲、丙的底面積相同),用兩個相同的管子在容器的6cm高度處連通(即管子底離容器底6cm,管子的體積忽略不計).現(xiàn)三個容器中,只有甲中有水,水位高2cm,如圖①所示.若每分鐘同時向乙、丙容器中注入相同量的水,到三個容器都注滿水停止,乙、丙容器中的水位h(cm)與注水時間t(min)的圖象如圖②所示.若乙比甲的水位高2cm時,注水時間m分鐘,則m的值為( 。
A.3或5B.4或6C.3或D.5或9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學興趣小組利用無人機在五峰山隧道正上空點P處測得黃石大橋西端點A的俯角為30°,東端點B(隧道西進口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長175米,隧道BC的長約多少米(計算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過點A(4,m),AB⊥x軸,且△AOB的面積為2.
(1)求k和m的值;
(2)若點C(x,y)也在反比例函數(shù)y=的圖象上,當-3≤x≤-1時,求函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點,頂點坐標且開口向下,則下列結(jié)論:①拋物線經(jīng)過點;②;③關(guān)于的方程有兩個不相等的實數(shù)根;④對于任意實數(shù),總成立。其中結(jié)論正確的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結(jié)論:①4a﹣2b+c<0;②2a﹣b<0;③a<0;④b2+8a>4ac,其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,﹣2),頂點為D,對稱軸交x軸于點E.
(1)求該二次函數(shù)的解析式;
(2)設(shè)M為該拋物線對稱軸左側(cè)上的一點,過點M作直線MN∥x軸,交該拋物線于另一點N.是否存在點M,使四邊形DMEN是菱形?若存在,請求出點M的坐標;若不存在,請說明理由;
(3)連接CE(如圖2),設(shè)點P是位于對稱軸右側(cè)該拋物線上一點,過點P作PQ⊥x軸,垂足為Q.連接PE,請求出當△PQE與△COE相似時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C,把△BP2C繞點C順時針旋轉(zhuǎn)180°,得到△CP3D,依此類推,得到的等腰直角三角形的直角頂點P2020的坐標為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com