【題目】如圖,在正方形網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為(﹣2,4)、(﹣2,0)、(﹣4,1),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:

(1)畫出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A1B1C1;
(2)平移△ABC,使點(diǎn)A移到點(diǎn)A2(0,2),畫出平移后△A2B2C2并寫出點(diǎn)B2、C2的坐標(biāo);
(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2成中心對(duì)稱,其對(duì)稱中心坐標(biāo)為

【答案】
(1)

解:如圖所示:△A1B1C1即為所求:


(2)

解:如圖所示:△A2B2C2即為所求:

由圖可知:B2(0,﹣2),C2(﹣2,﹣1)


(3)△A1B1C1;(1,﹣1)
【解析】解: (3)∵連接A2A1 , B2B1 , C2C1 , 三條線段恰好經(jīng)過(guò)點(diǎn)D,
由圖象可知DA2=DA1 , DB2=DB1 , DC2=DC1 ,
∴△A2B2C2中與△A1B1C1中心對(duì)稱,點(diǎn)D即為對(duì)稱中心,
由圖象可知D(1,﹣1).
所以答案是:△A1B1C1 , (1,﹣1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)悉,2013年財(cái)政部核定海南省發(fā)行的60億地方政府“債券資金”,全部用于交通等重大項(xiàng)目建設(shè).以下是60億“債券資金”分配統(tǒng)計(jì)圖:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,a= , b=(都精確到0.1);
(3)在扇形統(tǒng)計(jì)圖中,“教育文化”對(duì)應(yīng)的扇形圓心角的度數(shù)為°(精確到1°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,
問(wèn)題1:如圖1,P為AB邊上的一點(diǎn),以PD,PC為邊作平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ,DC的長(zhǎng)能否相等,為什么?
問(wèn)題2:如圖2,若P為AB邊上一點(diǎn),以PD,PC為邊作平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.
問(wèn)題3:若P為AB邊上任意一點(diǎn),延長(zhǎng)PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長(zhǎng)是否也存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.
問(wèn)題4:如圖3,若P為DC邊上任意一點(diǎn),延長(zhǎng)PA到E,使AE=nPA(n為常數(shù)),以PE、PB為邊作平行四邊形PBQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長(zhǎng)是否也存在最小值?如果存在,請(qǐng)求出最小值,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有白、紅、黑三種顏色的小球,其中白球2只,紅球1只,黑球1只,它們除了顏色之外沒(méi)有其它區(qū)別,從袋中隨機(jī)地摸出1只球,記錄下顏色后放回?cái)噭,再摸出第二只球并記錄顏色,求兩次都摸出白球的概率?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個(gè)條件,不正確的是(
A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,點(diǎn)P、Q分別在邊AB、BC上,且AP=BQ.
(1)求證:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 , 為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,且BC=2,則AB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.

(1)請(qǐng)你補(bǔ)全這個(gè)輸水管道的圓形截面;
(2)若這個(gè)輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個(gè)圓形截面的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案