【題目】如圖,正方形 ABCD 中,AD ,已知點 E 是邊 AB 上的一動點(不與AB 重合)將△ADE 沿 DE 對折,點 A 的對應(yīng)點為 P,當△APB 是等腰三角形時, 線段 AE=

【答案】2

【解析】

根據(jù)△APB 是等腰三角形可以進行分類討論:①,此時根據(jù)折疊的性質(zhì)可以得到△APD是等邊三角形,則,那么,結(jié)合正方形的邊長便可以求出;②,此時可以結(jié)合等腰三角形的性質(zhì)進行求解;③,這種情況下是不符合題意得,所以不作考慮;

①當時:

由正方形性質(zhì)可得:,

由折疊性質(zhì)可得:

△APD是等邊三角形

;

②當時:過P點作于點F,過P點作于點G,如下圖所示:

四邊形為矩形,

,

在四邊形中:

設(shè),那么

由勾股定理可得:

解得:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自我省深化課程改革以來,盤錦市某校開設(shè)了:A.利用影長求物體高度,B.制作視力表,C.設(shè)計遮陽棚,D.制作中心對稱圖形,四類數(shù)學(xué)實踐活動課.規(guī)定每名學(xué)生必選且只能選修一類實踐活動課,學(xué)校對學(xué)生選修實踐活動課的情況進行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息解決下列問題:

(1)本次共調(diào)查______名學(xué)生,扇形統(tǒng)計圖中B所對應(yīng)的扇形的圓心角為______度;

(2)補全條形統(tǒng)計圖;

(3)該校參加實踐活動課的學(xué)生共1200人,求該校參加D類實踐活動課的學(xué)生大約多少人?

(4)選修D類數(shù)學(xué)實踐活動的學(xué)生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機抽取2人做校報設(shè)計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為圓O的直徑,點C為圓O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.

(1)試判斷CD與圓O的位置關(guān)系,并說明理由;

(2)若直線lAB的延長線相交于點E,圓O的半徑為3,并且∠CAB=30°,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,CEBDECF平分∠DCEDB交于點F

1)求證:BFBC;

2)若AB4cmAD3cm,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一元二次方程有兩個不相等的實數(shù)根.

1)求的取值范圍;

2)設(shè)是方程的兩個不相等的實數(shù)根,且滿足.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:

在綜合與實踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動.如 1,將:矩形紙片 ABCD 沿對角線 AC 剪開,得到△ABC 和△ACD.并且量得 AB 4cm,AC8cm

操作發(fā)現(xiàn):

1)將圖 1 中的△ACD 以點 A 為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)∠α,使∠α=∠BAC,得到如圖 2 所示的△ACD,過點 C AC′的平行線,與 DC'的延長線 交于點 E,則四邊形 ACEC′的形狀是

2)創(chuàng)新小組將圖 1 中的△ACD 以點 A 為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使 B A、D 三點在同一條直線上,得到如圖 3 所示的△ACD,連接 CC',取 CC′的中 F,連接 AF 并延長至點 G,使 FGAF,連接 CG、CG,得到四邊形 ACGC′, 發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.

實踐探究:

3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進行如下操作:將△ABC 沿著 BD 方向平移,使點 B 與點 A 重合,此時 A 點平移至 A'點,A'C BC′相交于點 H, 如圖 4 所示,連接 CC′,試求 tanCCH 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點從點出發(fā)沿方向以每秒2個單位長度的速度向點勻速運動,同時點從點出發(fā)沿方向以每秒1個單位長度的速度向點勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點運動的時間是.過點于點,連接

1______.(用含的代數(shù)式表示)

2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值;如果不能,請說明理由.

3)當為何值時,為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在RtABC中,∠C90°AC3,BC4

1)試在圖中作出△ABCA為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1

2)若點B的坐標為(﹣3,5),試在圖中畫出直角坐標系,并直接寫出AC兩點的坐標;

3)根據(jù)(2)的坐標系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并直接寫出點A2B2、C2的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在RtABC中,∠ACB=90°,AC=BC.點PAB邊上一點,QBC邊上一點,且∠BPQ=APC,過點AADPC,交BC于點D,直線AD分別交直線PC、PQEF

1)求證:∠FDQ=FQD;

2)把DFQ沿DQ邊翻折,點F剛好落在AB邊上點G,設(shè)PC分別交GQ、GDMN,試判定MNEN的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

同步練習冊答案