【題目】某市規(guī)定了每月用水量不超過18立方米和超過18立方米兩種不同的收費標(biāo)準(zhǔn),該市的用戶每月應(yīng)交水費(元)是用水量(立方米)的一次函數(shù),其圖象如圖所示:
(1)若某月用水量超過18立方米,則每立方米的水費為__________元;
(2)當(dāng)時,關(guān)于的函數(shù)關(guān)系式;
(3)若小敏家三月份交水費81元,求這個月小敏家的用水量.
【答案】(1)3;(2)函數(shù)的解析式為y=3x9(x18);(3)小敏家這個月用水量為30立方米;
【解析】
(1)根據(jù)函數(shù)圖象上點的縱坐標(biāo),可得答案;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(3)根據(jù)函數(shù)解析式,自變量與函數(shù)值得對應(yīng)關(guān)系,可得答案.
(1)每立方米的水費為:;
答:若某月用水量超過18立方米,則每立方米的水費為3元;
(2)設(shè)函數(shù)解析式為y=kx+b(x18),
∵直線經(jīng)過點(18,45)和(28,75),
∴,
解得,
∴函數(shù)的解析式為y=3x9(x18),
(3)∵81元>45元,
∴用水量超過18立方米,
由(2)得,函數(shù)的解析式為y=3x9(x18),
當(dāng)y=81時,3x9=81,
解得x=30;
答:小敏家這個月用水量為30立方米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動課上,老師要求學(xué)生在5×5的正方形ABCD網(wǎng)格中(小正方形的邊長為1)畫等腰三角形,要求三個頂點都在格點上(小正方形的頂點稱為格點),用實線畫四種圖形,且分別符合下列各條件:
(1)面積為2(畫在圖1中);
(2)面積為4,且三邊與AB或AD都不平行(畫在圖2中);
(3)面積為5,且三邊與AB或AD都不平行(畫在圖3中);
(4)面積為,且三邊與AB或AD都不平行(畫在圖4中).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,AE∥BD交CB的延長線于點E.若∠E=35°,則∠BAC的度數(shù)為( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖所示,點為矩形邊的中點,在矩形的四個頂點處都有定位儀,可監(jiān)測運動員的越野進程,其中一位運動員從點出發(fā),沿著的路線勻速行進,到達點.設(shè)運動員的運動時間為,到監(jiān)測點的距離為.現(xiàn)有與的函數(shù)關(guān)系的圖象大致如圖所示,則這一信息的來源是( ).
A. 監(jiān)測點 B. 監(jiān)測點 C. 監(jiān)測點 D. 監(jiān)測點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標(biāo),并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達到最大時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】晴晴在某商店購買商品若干次(每次、兩種商品都購買),其中第一、二兩次購買時,均按標(biāo)價購買;第三次購買時,商品、同時打折,三次購買商品、的數(shù)量和費用如表所示:
購買商品的數(shù)量/個 | 購買商品的數(shù)量/個 | 購買總費用/元 | |
第一次購物 | 6 | 5 | 980 |
第二次購物 | 3 | 7 | 940 |
第三次購物 | 9 | 8 | 912 |
(1)求商品、的標(biāo)價;
(2)若商品、的折扣相同,問商店是打幾折出售這兩種商品的?
(3)在(2)的條件下,若晴晴第四次購物共花去了480元,則晴晴有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)相交于、兩點,與軸,軸分別交于、兩點,已知,的面積為.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)連接,,點是線段的中點,直線向上平移個單位將的面積分成兩部分,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)已知E,F分別為正方形ABCD的邊BC,CD上的點,AF,DE相交于點G,當(dāng)E,F分別為邊BC,CD的中點時,有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點E不是邊BC的中點,F不是邊CD的中點,且CE=DF,上述結(jié)論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點E,F分別在CB的延長線和DC的延長線上,且CE=DF,此時,上述結(jié)論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和BF,若點M,N,P,Q分別為AE,EF,FD,AD的中點,請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,以點為圓心,的長為半徑畫弧,與邊交于點,將 繞點旋轉(zhuǎn)后點與點恰好重合,則圖中陰影部分的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com