【題目】如圖,要在平行四邊形內(nèi)作一個(gè)菱形.甲,乙兩位同學(xué)的作法分別如下:
對(duì)于甲乙兩人的作法,可判斷( )
A.甲正確,乙錯(cuò)誤B.甲錯(cuò)誤,乙正確C.甲,乙均正確D.甲、乙均錯(cuò)誤
【答案】C
【解析】
甲:首先證明△AOE≌△COF(ASA),可得AE=CF,再根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可判定四邊形AECF是平行四邊形,再由AC⊥EF,可根據(jù)對(duì)角線互相垂直的四邊形是菱形判定出AECF是菱形;乙:四邊形ABCD是平行四邊形,可根據(jù)角平分線的定義和平行線的定義,求得AB=AF,所以四邊形ABEF是菱形.
甲的作法正確,
證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAC=∠ACB,
∵EF是AC的垂直平分線,
∴AO=CO,
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA),
∴AE=CF,
又∵AE∥CF,
∴四邊形AFCE是平行四邊形,
∵EF⊥AC,
∴四邊形AFCE是菱形;
乙的作法正確;
證明:∵AD∥BC,
∴∠1=∠2,∠6=∠7,
∵BF平分∠ABC,AE平分∠BAD,
∴∠2=∠3,∠5=∠6,
∴∠1=∠3,∠5=∠7,
∴AB=AF,AB=BE,
∴AF=BE,
∵AF∥BE,且AF=BE,
∴四邊形ABEF是平行四邊形,
∵AB=AF,
∴平行四邊形ABEF是菱形;
故甲、乙做法均正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為慶祝重慶八中建校八十周年,學(xué)校要舉行一系列的慶;顒(dòng). 慶;顒(dòng)的主要方式有四種,分別是A:“我與八中同成長(zhǎng)”詩(shī)歌征文比賽、B:“舞動(dòng)八中”街舞比賽、C:“水墨校園”繪畫(huà)比賽、D:“歷史名人cosplay”比賽. 學(xué)校圍繞“你最喜歡的活動(dòng)方式是什么?”在全校學(xué)生中隨機(jī)抽樣部分學(xué)生進(jìn)行調(diào)查(四個(gè)選項(xiàng)中必須且只選一項(xiàng)),根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如下兩種不完整的統(tǒng)計(jì)圖表:
“最喜歡的活動(dòng)方式”條形統(tǒng)計(jì)圖 “最喜歡的活動(dòng)方式”扇形統(tǒng)計(jì)圖
(1)本次抽查的學(xué)生共_______人,m=__________,并將條形統(tǒng)計(jì)圖補(bǔ)充完成;
(2)學(xué)校采用抽簽方式讓每班在A,B,C,D四項(xiàng)宣傳方式中隨機(jī)抽取兩項(xiàng)進(jìn)行展示,請(qǐng)用樹(shù)狀圖或列表法求某班所抽到的兩項(xiàng)方式恰好是A和B的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一式子的平方,如,然后小明以進(jìn)行了以下探索:
設(shè)(其中a,b,m,n均為整數(shù)),則有,所以,,這樣小明找到了一種類似的式子化為平方式的方法。
請(qǐng)仿照小明的方法探索解決下列問(wèn)題:
(1)當(dāng)a,b,m,n均為整數(shù)時(shí),若,則a=_____,b=_______;
(2)請(qǐng)找一組正整數(shù),填空:________+_________=(____+______);
(3)若,且a,m,n均為正整數(shù),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究題:
(一)小明在玩積木時(shí),把三個(gè)正方體積木擺成一定的形狀,正面看如圖①所示:
(1)若圖中的△DEF為直角三角形,∠DEF=90°,正方形P的面積為9,正方形Q的面積為15,則正方形M的面積為_(kāi)_______;
(2)若P的面積為36cm,Q的面積為64cm,同時(shí)M的面積為100cm,則△DEF為_(kāi)_______三角形.
(二)圖形變化:如圖②,分別以直角三角形ABC(∠ACB=90°)的三邊為直徑向三角形外作三個(gè)半圓,你能找出這三個(gè)半圓的面積S1、S2、S3之間有什么關(guān)系嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,直線l1、l2、l3分別通過(guò)A、B、C三點(diǎn),且l1∥l2∥l3,若l1與l2的距離為6,正方形ABCD的面積等于100,l2與l3的距離為( )
A. 8B. 10C. 9D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(-1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(-3,0)和(-2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2-4ac<0;②當(dāng)x>-1時(shí)y隨x增大而減小;③a+b+c<0;④若方程ax2+bx+c-m=0沒(méi)有實(shí)數(shù)根,則m>2;⑤3a+c<0.其中,正確結(jié)論的序號(hào)是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在藝術(shù)節(jié)中組織中小學(xué)校文藝匯演,甲、乙兩所學(xué)校共92名學(xué)生其中甲校學(xué)生多于乙校學(xué)生,且甲校學(xué)生不足90名,現(xiàn)準(zhǔn)備統(tǒng)一購(gòu)買(mǎi)服裝參加演出,下表是某服裝廠給出的演出服裝價(jià)格表:
購(gòu)買(mǎi)服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套及以上 |
每套服裝的價(jià)格 | 60元 | 50元 | 40元 |
如果兩所學(xué)校單獨(dú)購(gòu)買(mǎi)服裝,一共應(yīng)付5000元
(1)甲、乙兩校各有多少名學(xué)生準(zhǔn)備參加匯演?
(2)如果甲、乙兩校聯(lián)合起來(lái)購(gòu)買(mǎi)服裝,那么比各自購(gòu)買(mǎi)服裝共可以節(jié)省多少錢(qián)?
(3)如果甲校有10名學(xué)生被調(diào)去參加書(shū)法繪畫(huà)比賽不能參加演出,請(qǐng)你為兩校設(shè)計(jì)購(gòu)買(mǎi)服裝方案,并說(shuō)明哪一種最省錢(qián).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,P是BC上一動(dòng)點(diǎn),(不與B、C重合)① CE平分∠DCF,② AP⊥PE,③ AP=EP.以此三個(gè)條件中的兩個(gè)為條件,另一個(gè)為結(jié)論,可構(gòu)成三個(gè)命題,即:①② ③,①③ ②,②③ ①.
(1)試判斷上述三個(gè)命題是否正確(直接作答);
(2)請(qǐng)選擇一個(gè)你認(rèn)為正確的命題給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文具商店銷售功能相同的兩種品牌的計(jì)算器,購(gòu)買(mǎi)2個(gè)A品牌和1個(gè)B品牌的計(jì)算器共需122元;購(gòu)買(mǎi)1個(gè)A品牌和2個(gè)B品牌的計(jì)算器共需124元.
(1)求這兩種品牌計(jì)算器的單價(jià);
(2)學(xué)校開(kāi)學(xué)前夕,該商店舉行促銷活動(dòng),具體辦法如下:購(gòu)買(mǎi)A品牌計(jì)算器按原價(jià)的九折銷售,購(gòu)買(mǎi)B品牌計(jì)算器超出10個(gè)以上超出的部分按原價(jià)的八折銷售,①設(shè)購(gòu)買(mǎi)x個(gè)A品牌的計(jì)算器需要y1元,購(gòu)買(mǎi)x個(gè)B品牌的計(jì)算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
②小明準(zhǔn)備聯(lián)系一部分同學(xué)集體購(gòu)買(mǎi)同一品牌的計(jì)算器,若購(gòu)買(mǎi)計(jì)算器的數(shù)量超過(guò)10個(gè),問(wèn)購(gòu)買(mǎi)哪種品牌的計(jì)算器更合算?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com