a2
(a3
(a3
4=a14
分析:根據(jù)同底數(shù)冪的乘法與冪的乘方的知識求解即可求得答案.
解答:解:∵a14=a2•a12=a2•(a34
故答案為:(a3).
點評:此題考查了同底數(shù)冪的乘法與冪的乘方.此題比較簡單,注意掌握指數(shù)的變化是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知A1、A2、A3是拋物線y=
1
2
x2上的三點,A1B1、A2B2、A3B3分別垂直于x軸,垂足為B1、B2、B3,直線A2B2交線段A1A3于點C.
(1)如圖,若A1、A2、A3三點的橫坐標(biāo)依次為1,2,3,求線段CA2的長;
(2)如圖,若將拋物線y=
1
2
x2改為拋物線y=
1
2
x2-x+1,A1、A2、A3三點的橫坐標(biāo)為連續(xù)整數(shù),其他條件不變,求線段CA2的長;
(3)若將拋物線y=
1
2
x2改為拋物線y=ax2+bx+c,A1、A2、A3三點的橫坐標(biāo)為連續(xù)整數(shù),其他條件不變,請猜想線段CA2的長(用a、b、c表示,并直接寫出答案).
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

a是不為1的有理數(shù),我們把
1
1-a
稱為a的差倒數(shù).如:2的差倒數(shù)是
1
1-2
=-1
,現(xiàn)已知a1=
1
2
,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…
(1)求a2,a3,a4的值;
(2)根據(jù)(1)的計算結(jié)果,請猜想并寫出a2010•a2011•a2012的值.
(3)計算:a1•a2•a3…a2010•a2011•a2012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知-1<a<0,則a2,a3,
1
a
之間的大小關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

長邊與短邊之比為2:1的長方形為“標(biāo)準(zhǔn)長方形”.約定用短邊分別為a1、a2、a3、a4、a5(其中a1<a2<a3<a4<a5)的5個不同“標(biāo)準(zhǔn)長方形”拼成的大長方形記為(a1、a2、a3、a4、a5),如圖,短邊長分別為1,2,2.5,4.5,7的“標(biāo)準(zhǔn)長方形”拼成的大長方形記為(1,2,2.5,4.5,7),解答下列問題:
(1)寫出長方形(1,2,5,a4,a5)中a4和a5可取的值及相應(yīng)的面積不同的長方形(用上述長方形的記法表示出來),并畫出其中兩個符合要求的長方形示意圖.
(2)所有這些長方形(1,2,5,a4,a5)的面積的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)引例:如圖①所示,直線AD∥CE.求證:∠B=∠A+∠C.
(2)變式:如圖②所示,a∥b,請判斷∠A1、∠A2、∠A3、∠A4、∠A5之間的大小關(guān)系,直接寫出結(jié)論,無需證明.
答:______.
如圖③a∥b,請判斷∠A1、∠A2、∠A3、∠A4之間的大小關(guān)系,直接寫出結(jié)論,無需證明.
(3)推廣:如圖④a∥b,請判斷∠A1、∠A2、∠A3、…、∠A2n之間的大小關(guān)系,直接寫出結(jié)論,無需證明(注意圖中的“…”)
答:______.
如圖⑤,a∥b,請判斷∠A1、∠A2、∠A3、…、∠A2n+1之間的大小關(guān)系,直接寫出結(jié)論,無需證明(注意圖中的“…”)
答:______.

查看答案和解析>>

同步練習(xí)冊答案