【題目】如圖所示,⊙O的直徑AB為10cm,弦AC為6cm,∠ACB的平分線交⊙O于D,求BC,AD,BD的長.
科目:初中數(shù)學 來源: 題型:
【題目】某學校初一年級參加社會實踐課,報名第一門課的有x人,第二門課的人數(shù)比第一門課的少10人,現(xiàn)在需要從報名第二門課的人中調(diào)出10人學習第一門課,那么:
(1)報兩門課的共有多少人?
(2)調(diào)動后,報名第一門課的人數(shù)為 人,第二門課人數(shù)為 人.
(3)調(diào)動后,報名第一門課比報名第二門課多多少人?計算出代數(shù)式后,請選擇一個你覺得合適的x的值代入,并求出具體的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,每個小正方形邊長為1,點A的坐標為(-2,3)、點B的坐標為(-3,1)、點C的坐標為(1,-2)
(1)作出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′、B′、C′分別是A、B、C的對應點,不寫畫法).
(2) 直接寫出A′、B′、C三點的坐標.
(3)在x軸上求作一點P,使PA+PB的值最小.(簡要寫出作圖步驟)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
【答案】相等,理由見解析.
【解析】試題分析:分別過E、F 點作CD的平行線EM、FN,根據(jù)平行線的性質(zhì)得CD∥FN∥EM∥AB,則∠3=∠1,∠4=∠5,∠1=∠6,而∠1=∠2,于是3+∠4=∠5+∠6.
試題解析:分別過E、F 點作CD的平行線EM、FN,如圖
∵AB∥CD,
∴CD∥FN∥EM∥AB,
∴∠3=∠2,∠4=∠5,∠1=∠6,
而∠1=∠2,
∴∠3+∠4=∠5+∠6,
即∠BEF=∠EFC.
【題型】解答題
【結(jié)束】
26
【題目】(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )
(2)請用字母表示第n個等式,并驗證你的發(fā)現(xiàn).
(3)利用(2)中你的發(fā)現(xiàn),求20+21+22+23+…+22016+22017的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】種植草莓大戶張華現(xiàn)有22噸草莓等待出售,有兩種銷售渠道,一是運往省城直接批發(fā)給零售商,二是在本地市場零售,受客觀因素影響,張華每天只能采用一種銷售渠道,而且草莓必須在10天內(nèi)售出(含10天)經(jīng)過調(diào)查分析,這兩種銷售渠道每天銷量及每噸所獲純利潤見右表:
(1)若一部分草莓運往省城批發(fā)給零售商,其余在本地市場零售,請寫出銷售22噸草莓所獲純利潤y(元)與運往省城直接批發(fā)零售商的草莓量x(噸)之間的函數(shù)關(guān)系式;
(2)怎樣安排這22噸草莓的銷售渠道,才使張華所獲純利潤最大?并求出最大純利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中.點E,F分別在BC,CD上,△AEF是等邊三角形.連接AC交EF于點G.過點G作GH⊥CE于點H.若,則=( 。
A. 6 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學七(2)班學生去勞動實踐基地開展實踐勞動,在勞動前需要分成x組,若每組11人,則余下一人,若每組12人,則有一組少4人,若每組分配7人,則該班可分成_____組.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,則下列結(jié)論:
①∠BOE=70°; ②OF平分∠BOD;③∠POE=∠BOF; ④∠POB=2∠DOF.
其中正確的結(jié)論有_______________(填結(jié)論前面的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實數(shù)p的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com