【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>

1)(2x5290

22x23x20

3x2+2x3990

42x3)=2xx3

【答案】(1)x11,x24;(2x1=﹣x22;(3x1=﹣21,x219;(4x13,x21

【解析】

1)根據(jù)因式分解法即可求解;

2)根據(jù)因式分解法即可求解;

3)根據(jù)因式分解法即可求解;

4)根據(jù)因式分解法即可求解.

解:(1)(2x5290

2x5+3)(2x53)=0,

2x5+30,2x530

x11,x24;

22x23x20,

2x+1)(x2)=0

2x+10,x20,

x1=﹣x22;

3x2+2x3990,

x+21)(x19)=0,

x+210x190,

x1=﹣21x219;

42x3)=2xx3),

2x3)﹣2xx3)=0

2x3)(1x)=0,

x30,1x0

x13,x21

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)課上,張老師出示了一個題目:如圖,ABCD的對角線相交于點(diǎn)O,過點(diǎn)OEF垂直于BDAB,CD分別于點(diǎn)F,E,連接DF,請根據(jù)上述條件,寫出一個正確結(jié)論其中四位同學(xué)寫出的結(jié)論如下:

小青:;小何:四邊形DFBE是正方形;

小夏:;小雨:

這四位同學(xué)寫出的結(jié)論中不正確的是  

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A1,-4)為拋物線的頂點(diǎn),點(diǎn)Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

3)若點(diǎn)Qy軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的一元二次方程有兩個實(shí)數(shù)根,且其中一個根為另一個根的2倍,則稱這樣的方程為倍根方程.以下關(guān)于倍根方程的說法,正確的是________.(寫出所有正確說法的序號).

方程是倍根方程;

是倍根方程,則

若點(diǎn)在反比例函數(shù)的圖像上,則關(guān)于的方程是倍根方程;

若方程是倍根方程,且相異兩點(diǎn), 都在拋物線上,則方程的一個根為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在RtABC 中, ,DE是斜邊BC上兩動點(diǎn),且∠DAE=45°,將△繞點(diǎn)逆時針旋轉(zhuǎn)90后,得到△,連接.

1)試說明:△≌△

(2)當(dāng)BE=3,CE=9時,求∠BCF的度數(shù)和DE的長; 

3)如圖2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°D是斜邊BC所在直線上一點(diǎn),BD=3,BC=8,求DE2的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=12,P為線段AB上的一個動點(diǎn),分別以AP、PB為邊在AB的同側(cè)作菱形APCD和菱形PBFE,點(diǎn)P、C、E在一條直線上,∠DAP=60°M、N分別是對角線AC、BE的中點(diǎn).當(dāng)點(diǎn)P在線段AB上移動時,點(diǎn)M、N之間的距離最短為______.(結(jié)果留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料閱讀:如圖①所示的圖形,像我們常見的學(xué)習(xí)用品圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖”.

解決問題:

1)觀察規(guī)形圖,試探究,,之間的數(shù)量關(guān)系,并說明理由;

2)請你直接利用以上結(jié)論,解決以下兩個問題:

.如圖②,把一塊三角尺放置在上,使三角尺的兩條直角邊恰好經(jīng)過點(diǎn),,若,則_____.

.如圖③,平分平分,若,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知abcABC的三邊,滿足,且abc12.

(1)試求a,b,c的值;

(2)試求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求m,kn的值;

(2)求ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案