【題目】對于二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)稱為這兩個函數(shù)的“再生二次函數(shù)”,其中t是不為零的實數(shù),其圖象記作拋物線L.現(xiàn)有點A(2,0)和拋物線L上的點B(﹣1,n),請完成下列任務(wù):
(嘗試)
(1)當t=2時,拋物線y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的頂點坐標為 ;
(2)判斷點A是否在拋物線L上;
(3)求n的值;
(發(fā)現(xiàn))
通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線L總過定點,坐標為 .
(應用)
二次函數(shù)y=﹣3x2+5x+2是二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4的一個“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說明理由.
【答案】[嘗試](1)(1,﹣2);(2)點A在拋物線L上;(3)n=6;[發(fā)現(xiàn)](2,0),(﹣1,6);[應用]不是,理由見解析.
【解析】
[嘗試]
(1)將t的值代入“再生二次函數(shù)”中,通過配方可得到頂點的坐標;
(2)將點A的坐標代入拋物線L直接進行驗證即可;
(3)已知點B在拋物線L上,將該點坐標代入拋物線L的解析式中直接求解,即可得到n的值.
[發(fā)現(xiàn)]
將拋物線L展開,然后將含t值的式子整合到一起,令該式子為0(此時無論t取何值都不會對函數(shù)值產(chǎn)生影響),即可求出這個定點的坐標.
[應用]
將[發(fā)現(xiàn)]中得到的兩個定點坐標代入二次函數(shù)y=-3x2+5x+2中進行驗證即可.
解:[嘗試]
(1)∵將t=2代入拋物線L中,得:
y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,
∴此時拋物線的頂點坐標為:(1,﹣2).
(2)∵將x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得 y=0,
∴點A(2,0)在拋物線L上.
(3)將x=﹣1代入拋物線L的解析式中,得:
n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6.
[發(fā)現(xiàn)]
∵將拋物線L的解析式展開,得:
y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=t(x﹣2)(x+1)﹣2x+4
當x=2時,y=0,當x=-1時,y=6,與t無關(guān),
∴拋物線L必過定點(2,0)、(﹣1,6).
[應用]
將x=2代入y=﹣3x2+5x+2,y=0,即點A在拋物線上.
將x=﹣1代入y=﹣3x2+5x+2,計算得:y=﹣6≠6,
即可得拋物線y=﹣3x2+5x+2不經(jīng)過點B,
∴二次函數(shù)y=﹣3x2+5x+2不是二次函數(shù)y=x2﹣3x+2和一次函數(shù)y=﹣2x+4的一個“再生二次函數(shù)”.
科目:初中數(shù)學 來源: 題型:
【題目】小明利用函數(shù)與不等式的關(guān)系,對形如 (為正整數(shù))的不等式的解法進行了探究.
(1)下面是小明的探究過程,請補充完整:
①對于不等式,觀察函數(shù)的圖象可以得到如下表格:
的范圍 | ||
的符號 |
由表格可知不等式的解集為.
②對于不等式,觀察函數(shù)的圖象可得到如下表格:
的范圍 | |||
的符號 |
由表格可知不等式的解集為 .
③對于不等式,請根據(jù)已描出的點畫出函數(shù)的圖象;
觀察函數(shù)的圖象,
補全下面的表格:
的范圍 | ||||
的符號 |
由表格可知不等式的解集為 .
小明將上述探究過程總結(jié)如下:對于解形如 (為正整數(shù))的不等式,先將按從大到小的順序排列,再劃分的范圍,然后通過列表格的辦法,可以發(fā)現(xiàn)表格中的符號呈現(xiàn)一定的規(guī)律,利用這個規(guī)律可以求這樣的不等式的解集.
(2)請你參考小明的方法,解決下列問題:
①不等式的解集為 .
②不等式的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于6cm2?
(2)在(1)中,△PQB的面積能否等于8cm2?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為深化課改,落實立德樹人目標,某學校設(shè)置了以下四門拓展性課程:A.數(shù)學思維,B.文學鑒賞,C.紅船課程,D.3D打印,規(guī)定每位學生選報一門.為了解學生的報名情況,隨機抽取了部分學生進行調(diào)查,并制作成如下兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)求這次被調(diào)查的學生人數(shù);
(2)請將條形統(tǒng)計圖補充完整;
(3)假如全校有學生1000人,請估計選報“紅船課程”的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖所示,點到、、三點的距離均等于(為常數(shù)),到點的距離等于的所有點組成圖形. 射線與射線關(guān)于對稱,過點 C作于.
(1)依題意補全圖形(保留作圖痕跡);
(2)判斷直線與圖形的公共點個數(shù)并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校與圖書館在同一條筆直道路上。甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地。兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示。
(1)當____________分鐘時甲、乙兩人相遇,乙的速度為__________米/分鐘,點的坐標為_____________;
(2)求出甲、乙兩人相遇后與之間的函數(shù)關(guān)系式;
(3)當乙到達距學校800米處時,求甲、乙兩人之間的距離。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某小區(qū)門口的欄桿從水平位置AB繞固定點O旋轉(zhuǎn)到位置DC,已知欄桿AB的長為3.5米,OA的長為3米,點C到AB的距離為0.3米,支柱OE的高為0.6米,那么欄桿端點D離地面的距離為____________米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了配合全市“創(chuàng)建全國文明城市”活動,某校共1200名學生參加了學校組織的創(chuàng)建全國文明城市知識競賽,擬評出四名一等獎.
(1)求每一位同學獲得一等獎的概率;
(2)學校對本次競賽獲獎情況進行了統(tǒng)計,其中七、八年級分別有一名同學獲得一等獎,九年級有2名同學獲得一等獎,現(xiàn)從獲得一等獎的同學中任選兩人參加全市決賽,請通過列表或畫樹狀圖的方法,求所選出的兩人中既有七年級又有九年級同學的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com