【題目】程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問題:
一百饅頭一百僧,大僧三個更無爭,
小僧三人分一個,大小和尚得幾丁.
意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,下列求解結(jié)果正確的是( )
A. 大和尚25人,小和尚75人 B. 大和尚75人,小和尚25人
C. 大和尚50人,小和尚50人 D. 大、小和尚各100人
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖①中△ABC是等邊三角形,其邊長是3,圖②中△DEF是等腰直角三角形,∠F=90°,DF=EF=3.
(1)若S1為△ABC的面積,S2為△DEF的面積,S3=AB·BC·sinB,S4=DE·DF·sinD,請通過計算說明S1與S3,S2與S4之間有著怎樣的關(guān)系;
(2)在圖③中,∠P=α(α為銳角),OP=m,PQ=n,△OPQ的面積為S,請你根據(jù)第(1)小題的解答,直接寫出S與m,n以及α之間的關(guān)系式,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1的7張長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( )
A. a=b B. a=2b
C. a=3b D. a=4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l上依次有三點A、B、C,且AB=8、BC=16,點P為射線AB上一動點,將線段AP進(jìn)行翻折得到線段PA’(點A落在直線l上點A’處、線段AP上的所有點與線段PA’上的點對應(yīng))如圖1
(1)若翻折后A’C=2,則翻折前線段AP= ;
(2)若點P在線段BC上運動,點M為線段A’C的中點,求線段PM的長度;
(3)若點P 在線段BC上運動,點N為B’P的中點,點M為線段A’C的中點,設(shè)AP=x,用x表示A’M+PN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新學(xué)期開學(xué),某體育用品商店開展促銷活動,有兩種優(yōu)惠方案.
方案一:不購買會員卡時,乒乓球享受8.5折優(yōu)惠,乒乓球拍購買5副(含5副)以上才能享受8.5折優(yōu)惠,5副以下必須按標(biāo)價購買.
方案二:辦理會員卡時,全部商品享受八折優(yōu)惠,小健和小康的談話內(nèi)容如下:
會員卡只限本人使用.
(1)求該商店銷售的乒乓球拍每副的標(biāo)價.
(2)如果乒乓球每盒10元,小健需購買乒乓球拍6副,乒乓球a盒,請回答下列問題:
①如果方案一與方案二所付錢數(shù)一樣多,求a的值;
②直接寫出一個恰當(dāng)?shù)?/span>a值,使方案一比方案二優(yōu)惠;
③直接寫出一個恰當(dāng)?shù)?/span>a值,使方案二比方案一優(yōu)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形后,將其裁成四個相同的等腰梯形(如圖1),然后拼成一個平行四邊形(如圖2)。那么通過計算兩個圖形的陰影部分的面積,可以驗證成立的公式是( )
A.a2-b2=(a-b)2 | B.(a+b)2="a+2ab+b" |
C.(a-b)2=a2-2ab+b2 | D.a2-b2=(a-b)(a+b) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一張正方形紙片剪成四個大小一樣的小正方形,然后將其中一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進(jìn)行下去。
(1)完成下表:
剪的次數(shù) | 1 | 2 | 3 | 4 | 5 | ... | n |
小正方形的個數(shù) | 4 | 7 | 10 | ... |
(2) .(用含n的代數(shù)式表示)
(3)按上述方法,能否得到2018個小正方形?如果能,請求出n;如不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點A為半圓O直徑MN所在直線上一點,射線AB垂直于MN,垂足為A,半圓繞M點順時針轉(zhuǎn)動,轉(zhuǎn)過的角度記作a;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:
(1)探究:若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時,圓心O′到射線AB的距離是;如圖2,當(dāng)a=°時,半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):如圖4,在0°<α<90°時,為了對任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關(guān)系,請你幫助他直接寫出這個關(guān)系;cosα=(用含有R、m的代數(shù)式表示)
(4)拓展:如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個交點時,α的取值范圍是 , 并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com