【題目】如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x﹣2交于B,C兩點(diǎn).
(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);
(2)求證:△ABC是直角三角形;
(3)若點(diǎn)N為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作MN⊥x軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:∵頂點(diǎn)坐標(biāo)為(1,1),

∴設(shè)拋物線解析式為y=a(x﹣1)2+1,

又拋物線過(guò)原點(diǎn),

∴0=a(0﹣1)2+1,解得a=﹣1,

∴拋物線解析式為y=﹣(x﹣1)2+1,

即y=﹣x2+2x,

聯(lián)立拋物線和直線解析式可得 ,解得 ,

∴B(2,0),C(﹣1,﹣3)


(2)

證明:如圖,分別過(guò)A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),

則AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,

∴∠ABO=∠CBO=45°,即∠ABC=90°,

∴△ABC是直角三角形;


(3)

解:假設(shè)存在滿足條件的點(diǎn)N,設(shè)N(x,0),則M(x,﹣x2+2x),

∴ON=|x|,MN=|﹣x2+2x|,

由(2)在Rt△ABD和Rt△CEB中,可分別求得AB= ,BC=3 ,

∵M(jìn)N⊥x軸于點(diǎn)N

∴∠ABC=∠MNO=90°,

∴當(dāng)△ABC和△MNO相似時(shí)有 = = ,

①當(dāng) = 時(shí),則有 ,即|x||﹣x+2|= |x|,

∵當(dāng)x=0時(shí)M、O、N不能構(gòu)成三角形,

∴x≠0,

∴|﹣x+2|= ,即﹣x+2=± ,解得x= 或x= ,

此時(shí)N點(diǎn)坐標(biāo)為( ,0)或( ,0);

②當(dāng) = 時(shí),則有 ,即|x||﹣x+2|=3|x|,

∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,

此時(shí)N點(diǎn)坐標(biāo)為(﹣1,0)或(5,0),

綜上可知存在滿足條件的N點(diǎn),其坐標(biāo)為( ,0)或( ,0)或(﹣1,0)或(5,0)


【解析】(1)可設(shè)頂點(diǎn)式,把原點(diǎn)坐標(biāo)代入可求得拋物線解析式,聯(lián)立直線與拋物線解析式,可求得C點(diǎn)坐標(biāo);
(2)分別過(guò)A、C兩點(diǎn)作x軸的垂線,交x軸于點(diǎn)D、E兩點(diǎn),結(jié)合A、B、C三點(diǎn)的坐標(biāo)可求得∠ABO=∠CBO=45°,可證得結(jié)論;
(3)設(shè)出N點(diǎn)坐標(biāo),可表示出M點(diǎn)坐標(biāo),從而可表示出MN、ON的長(zhǎng)度,當(dāng)△MON和△ABC相似時(shí),利用三角形相似的性質(zhì)可得 = = ,可求得N點(diǎn)的坐標(biāo). 本題為二次函數(shù)的綜合應(yīng)用,涉及知識(shí)點(diǎn)有待定系數(shù)法、圖象的交點(diǎn)問(wèn)題、直角三角形的判定、勾股定理、相似三角形的性質(zhì)及分類討論等.在(1)中注意頂點(diǎn)式的運(yùn)用,在(3)中設(shè)出N、M的坐標(biāo),利用相似三角形的性質(zhì)得到關(guān)于坐標(biāo)的方程是解題的關(guān)鍵,注意相似三角形點(diǎn)的對(duì)應(yīng).本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度適中.
【考點(diǎn)精析】本題主要考查了拋物線與坐標(biāo)軸的交點(diǎn)和勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某學(xué)校初四年紀(jì)學(xué)生每周平均課外閱讀時(shí)間的情況,隨機(jī)抽查了該學(xué)校初四年級(jí)m名同學(xué),對(duì)其每周平均課外閱讀時(shí)間進(jìn)行統(tǒng)計(jì),繪制了如下條形統(tǒng)計(jì)圖(圖一)和扇形統(tǒng)計(jì)圖(圖二):

(1)根據(jù)以上信息回答下列問(wèn)題:
①求m值.
②求扇形統(tǒng)計(jì)圖中閱讀時(shí)間為5小時(shí)的扇形圓心角的度數(shù).
③補(bǔ)全條形統(tǒng)計(jì)圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知A(a,0),B(b,3),C(4,0),且滿足(a+b)2+|a﹣b+6|=0,線段AB交y軸于F點(diǎn).

(1)求點(diǎn)A、B的坐標(biāo);

(2)點(diǎn)D為y軸正半軸上一點(diǎn),若ED∥AB,且AM,DM分別平分∠CAB,∠ODE,如圖 2,求∠AMD的度數(shù);

(3)如圖 3,(也可以利用圖 1)①求點(diǎn)F的坐標(biāo);②坐標(biāo)軸上是否存在點(diǎn)P,使得△ABP和△ABC的面積相等?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知CD=6m,AD=8m,ADC=90°,BC=24m,AB=26m.圖中陰影部分的面積=_____m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下面是利用尺規(guī)作∠AOB的角平分線OC的作法:

①以點(diǎn)O為圓心,任意長(zhǎng)為半徑作弧,交OA、OB于點(diǎn)D,E;

②分別以點(diǎn)D,E為圓心,以大于DE的長(zhǎng)為半徑作弧,兩弧在∠AOB內(nèi)部交于點(diǎn)C;

③作射線OC,則射線OC就是∠AOB的平分線.

以上用尺規(guī)作角平分線時(shí),用到的三角形全等的判定方法是( 。

A. SSS B. SAS

C. ASA D. AAS

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了深化課程改革,某校積極開展校本課程建設(shè),計(jì)劃成立“文學(xué)鑒賞”、“國(guó)際象棋”、“音樂(lè)舞蹈”和“書法”等多個(gè)社團(tuán),要求每位學(xué)生都自主選擇其中一個(gè)社團(tuán),為此,隨機(jī)調(diào)查了本校部分學(xué)生選擇社團(tuán)的意向.并將調(diào)查結(jié)果繪制成如下統(tǒng)計(jì)圖表(不完整):

選擇意向

文學(xué)鑒賞

國(guó)際象棋

音樂(lè)舞蹈

書法

其他

所占百分比

a

20%

b

10%

5%


根據(jù)統(tǒng)計(jì)圖表的信息,解答下列問(wèn)題:
(1)求本次抽樣調(diào)查的學(xué)生總?cè)藬?shù)及a、b的值;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1300名學(xué)生,試估計(jì)全校選擇“音樂(lè)舞蹈”社團(tuán)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正△ABC的邊長(zhǎng)為2,過(guò)點(diǎn)B的直線l⊥AB,且△ABC與△A′BC′關(guān)于直線l對(duì)稱,D為線段BC′上一動(dòng)點(diǎn),則AD+CD的最小值是( 。
A.4
B.3
C.2
D.2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A( ,0),B(0,2),則點(diǎn)B2017的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案