【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時(shí)出發(fā),甲車以60千米/時(shí)的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達(dá)目的地后停止.甲、乙兩車相距的路程(千米)與甲車的行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)乙車的速度為 千米/時(shí), , .
(2)求甲、乙兩車相遇后與之間的函數(shù)關(guān)系式.
(3)當(dāng)甲車到達(dá)距地70千米處時(shí),求甲、乙兩車之間的路程.
【答案】(1)75;3.6;4.5;(2);(3)當(dāng)甲車到達(dá)距地70千米處時(shí),求甲、乙兩車之間的路程為180千米.
【解析】
(1)根據(jù)圖象可知兩車2小時(shí)后相遇,根據(jù)路程和為270千米即可求出乙車的速度;然后根據(jù)“路程、速度、時(shí)間”的關(guān)系確定的值;
(2)運(yùn)用待定系數(shù)法解得即可;
(3)求出甲車到達(dá)距地70千米處時(shí)行駛的時(shí)間,代入(2)的結(jié)論解答即可.
解:(1)乙車的速度為:千米/時(shí),
,.
故答案為:75;3.6;4.5;
(2)(千米),
當(dāng)時(shí),設(shè),根據(jù)題意得:
,解得,
∴;
當(dāng)時(shí),設(shè),
∴;
(3)甲車到達(dá)距地70千米處時(shí)行駛的時(shí)間為:(小時(shí)),
此時(shí)甲、乙兩車之間的路程為:(千米).
答:當(dāng)甲車到達(dá)距地70千米處時(shí),求甲、乙兩車之間的路程為180千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一平面直角坐標(biāo)系中畫出函數(shù)和的圖象.
觀察圖象,說(shuō)出拋物線的頂點(diǎn)坐標(biāo)、開口方向、對(duì)稱軸;
說(shuō)出各函數(shù)的最值;
說(shuō)明各函數(shù)圖象在對(duì)稱軸兩側(cè)部分的函數(shù)值隨的增大而變化的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點(diǎn)E,F(xiàn)同時(shí)從B點(diǎn)出發(fā),沿射線BC向右勻速移動(dòng),已知點(diǎn)F的移動(dòng)速度是點(diǎn)E移動(dòng)速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動(dòng)距離為x(0<x<6).
(1)∠DCB= 度,當(dāng)點(diǎn)G在四邊形ABCD的邊上時(shí),x= ;
(2)在點(diǎn)E,F(xiàn)的移動(dòng)過(guò)程中,點(diǎn)G始終在BD或BD的延長(zhǎng)線上運(yùn)動(dòng),求點(diǎn)G在線段BD的中點(diǎn)時(shí)x的值;
(3)當(dāng)2<x<6時(shí),求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時(shí),y有最大值?并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017江蘇省常州市)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“其他”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問(wèn)題:
(1)本次抽樣調(diào)查中的樣本容量是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有2000名學(xué)生,請(qǐng)根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了滿足學(xué)生借閱圖書的需求,計(jì)劃購(gòu)買一批新書,為此,該校圖書管理員對(duì)一周內(nèi)本校學(xué)生從圖書館借出各類圖書的數(shù)量進(jìn)行了統(tǒng)計(jì),結(jié)果如圖所示,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖
(2)該校學(xué)生最喜歡借閱哪類圖書?并求出此類圖書所在扇形的圓心角的度數(shù).
(3)該校計(jì)劃購(gòu)買新書共600本,若按扇形統(tǒng)計(jì)圖中的百分比來(lái)相應(yīng)地確定漫畫、科普、文學(xué)、其它這四類圖書的購(gòu)買量,問(wèn)應(yīng)購(gòu)買這四類圖書各多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列分解因式的過(guò)程:x2+2xy-3y2
解:原式=x2+2xy+y2-y2-3y2
=(x2+2xy+y2)-4y2
=(x+y)2-(2y)2
=(x+y+2y)(x+y-2y)
=(x+3y)(x-y)
像這種通過(guò)增減項(xiàng)把多項(xiàng)式轉(zhuǎn)化成完全平方形式的方法稱為配方法.
(1)請(qǐng)你運(yùn)用上述配方法分解因式:x2+4xy-5y2
(2)代數(shù)式x2+2x+y2-6y+15是否存在最小值?如果存在,請(qǐng)求出當(dāng)x、y分別是多少時(shí),此代數(shù)式存在最小值,最小值是多少?如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠C=90°,DE垂直平分斜邊AB,分別交AB、BC于D、E.若∠CAB=∠B+30°,CE=2cm.
求:(1)∠AEB 度數(shù).
(2)BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生對(duì)籃球、足球、排球、羽毛球、乒乓球這五種球類運(yùn)動(dòng)的喜愛情況,隨機(jī)抽取一部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,統(tǒng)計(jì)整理并繪制了以下兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)共抽取 名學(xué)生進(jìn)行問(wèn)卷調(diào)查;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,求出扇形統(tǒng)計(jì)圖中“足球”所對(duì)應(yīng)的圓心角的度數(shù);
(3)該校共有3000名學(xué)生,請(qǐng)估計(jì)全校學(xué)生喜歡足球運(yùn)動(dòng)的人數(shù).
(4)甲乙兩名學(xué)生各選一項(xiàng)球類運(yùn)動(dòng),請(qǐng)求出甲乙兩人選同一項(xiàng)球類運(yùn)動(dòng)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com