【題目】如圖,PA為⊙O的切線,A為切點(diǎn).過(guò)A作OP的垂線AB,垂足為點(diǎn)C,交⊙O于點(diǎn)B.延長(zhǎng)BO與⊙O交于點(diǎn)D,與PA的延長(zhǎng)線交于點(diǎn)E.

(1)求證:PB為⊙O的切線;(2)若tan∠ABE=,求sinE的值.

【答案】

1)證明:連接OA

∵PA⊙O的切線,

∴∠PAO=90°

∵OAOB,OP⊥ABC

∴BCCA,PBPA

∴△PBO≌△PAO

∴∠PBO∠PAO90°

∴PB⊙O的切線

2)解法1:連接AD,∵BD是直徑,∠BAD90°

由(1)知∠BCO90°

∴AD∥OP

∴△ADE∽△POE

∴EA/EPAD/OP AD∥OCAD2OC ∵tan∠ABE="1/2 " ∴OC/BC=1/2,設(shè)OCt,BC2t,AD=2t△PBC∽△BOC,得PC2BC4tOP5t

∴EA/EP=AD/OP=2/5,可設(shè)EA2m,EP=5m,PA=3m

∵PA=PB∴PB=3m

∴sinE=PB/EP=3/5

2)解法2:連接AD,則∠BAD90°由(1)知∠BCO90°∵AD∥OC,∴AD2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,設(shè)OCtBC2t,AB=4t△PBC∽△BOC,得PC2BC4t,

∴PAPB2t 過(guò)AAF⊥PBF,則AF·PB=AB·PC

∴AF=t 進(jìn)而由勾股定理得PFt

∴sinE=sin∠FAP=PF/PA=3/5

【解析】略

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)為(-2,0),直線與x軸、y軸分別交于點(diǎn)B和點(diǎn)C,連接AC,頂點(diǎn)為D的拋物線過(guò)A、B、C三點(diǎn).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)設(shè)拋物線的對(duì)稱軸DE交線段BC于點(diǎn)E,P是第一象限內(nèi)拋物線上一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交線段BC于點(diǎn)F,若四邊形DEFP為平行四邊形,求點(diǎn)P的坐標(biāo).

(3)設(shè)點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥AB,交AC于點(diǎn)N,點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿線段BA向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)t(秒)為何值時(shí),存在△QMN為等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,CE//BD,DE//AC.

(1)求證:四邊形OCED是菱形;
(2)當(dāng)CD=6,DE=5,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)ykx+b中,yx的增大而增大,b0,則這個(gè)函數(shù)的圖象不經(jīng)過(guò)(  )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為( ),點(diǎn)Q的坐標(biāo)為 ,且 , ,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的一組對(duì)邊與某條坐標(biāo)軸平行,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,圖2及圖3中點(diǎn)A的坐標(biāo)為(4,3).

(1)若點(diǎn)B的坐標(biāo)為(-2,0),則點(diǎn)A,B的“相關(guān)矩形”的面積為
(2)點(diǎn)C在y軸上,若點(diǎn)A,C的“相關(guān)矩形”的面積為8,求直線AC的解析式;
(3)如圖3,直線 與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,在直線MN上是否存在點(diǎn)D,使點(diǎn)A,D的“相關(guān)矩形”為正方形,如果存在,請(qǐng)求出點(diǎn)D的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,分別作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.

(1)求證:△BOE≌△DOF;

(2)若,則四邊形ABCD是什么特殊四邊形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】春天來(lái)了!有一群小朋友在草地上開(kāi)心的玩耍,所有的男生都戴黃帽子,女生都帶紅帽子,但有趣的事:在每個(gè)男生看來(lái),黃帽子和紅帽子一樣多, 在每個(gè)女生看來(lái), 黃帽子是紅帽子的2 ,則男生和女生共有_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題是真命題的是(

A. 9的平方根是﹣3B. 7是﹣49的平方根

C. 5-125的立方根D. 8的立方根是±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市甲、乙兩個(gè)汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:
(1)請(qǐng)你根據(jù)上圖填寫下表:

銷售公司

平均數(shù)

方差

中位數(shù)

眾數(shù)

5.2

9

9

17.0

8


(2)請(qǐng)你從以下兩個(gè)不同的方面對(duì)甲、乙兩個(gè)汽車銷售公司去年一至十月份的銷售情況進(jìn)行分析: ①?gòu)钠骄鶖?shù)和方差結(jié)合看;
②從折線圖上甲、乙兩個(gè)汽車銷售公司銷售數(shù)量的趨勢(shì)看(分析哪個(gè)汽車銷售公司較有潛力).

查看答案和解析>>

同步練習(xí)冊(cè)答案