【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°,DAB=45°.求證:AC=DC.

【答案】證明見解析.

【解析】AB=AC,根據(jù)等腰三角形的兩底角相等得到∠B=C=30°,再根據(jù)三角形的內(nèi)角和定理可計算出∠BAC=120°,而∠DAB=45°,則∠DAC=BAC-DAB=120°-45°,根據(jù)三角形外角性質(zhì)得到∠ADC=B+DAB=75°,再根據(jù)等腰三角形的判定可得DC=AC,這樣即可得到結(jié)論.

AB=AC,

∴∠B=C=30°,

∵∠C+BAC+B=180°,

∴∠BAC=180°﹣30°﹣30°=120°,

∵∠DAB=45°,

∴∠DAC=BAC﹣DAB=120°﹣45°=75°;

∵∠DAB=45°,

∴∠ADC=B+DAB=75°,

∴∠DAC=ADC,

DC=AC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(1)班班主任對本班學(xué)生進(jìn)行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類(記為A)、音樂類(記為B)、球類(記為C)、其它類(記為D).根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進(jìn)行了登記且每人只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學(xué)生進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計圖.請你結(jié)合圖中所給信息解答下列問題:
(1)七年級(1)班學(xué)生總?cè)藬?shù)為人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為度,請補(bǔ)全條形統(tǒng)計圖;
(2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名學(xué)生擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.

(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);

(2)如圖(2),將∠COD繞頂點(diǎn)O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個旋轉(zhuǎn)過程中,當(dāng)∠AOC的度數(shù)是多少時,∠COE=2DOB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價格也在不斷下降.今年5月份A款汽車的售價比去年同期每輛降價1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.

(1)今年5月份A款汽車每輛售價多少萬元?

(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進(jìn)價為7.5萬元,B款汽車每輛進(jìn)價為6萬元,公司預(yù)計用不多于105萬元且不少于99萬元的資金購進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?

(3)如果B款汽車每輛售價為8萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬元,要使(2)中所有的方案獲利相同,a值應(yīng)是多少?此時,哪種方案對公司更有利?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我們學(xué)習(xí)過的數(shù)學(xué)教科書中,有一個數(shù)學(xué)活動,其具體操作過程是:
第一步:對折矩形紙片ABCD,使AD與BC重合,把紙片展開,得到折痕EF(如圖1);
第二步:再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過點(diǎn)B,得到折痕BM,同時得到線段BN(如圖2).

請解答以下問題:
(1)如圖2,若延長MN交BC于P,△BMP是什么三角形?請證明你的結(jié)論;
(2)在圖2中,若AB=a,BC=b,a、b滿足什么關(guān)系,才能在矩形紙片ABCD上剪出符合(1)中結(jié)論的三角形紙片BMP?
(3)設(shè)矩形ABCD的邊AB=2,BC=4,并建立如圖3所示的直角坐標(biāo)系.設(shè)直線BM′為y=kx,當(dāng)∠M′BC=60°時,求k的值.此時,將△ABM′沿BM′折疊,點(diǎn)A是否落在EF上(E、F分別為AB、CD中點(diǎn)),為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點(diǎn),AE=5,現(xiàn)要剪下一張等腰三角形紙片(△AEP),使點(diǎn)P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:

(1)小明總共剪開了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補(bǔ)全.

(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點(diǎn),若CF=2,F(xiàn)D=4,則BC的長為(
A.6
B.2
C.4
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=2,∠B=30°,P是BC邊上一個動點(diǎn),過點(diǎn)P作PD⊥BC,交△ABC的AB邊于點(diǎn)D.若設(shè)PD為x,△BPD的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案