精英家教網(wǎng)已知:如圖,AB是⊙O的切線,切點(diǎn)為A,OB交⊙O于C且C為OB中點(diǎn),過C點(diǎn)的弦CD使∠ACD=45°,
AD
的長(zhǎng)為
2
2
π
,求弦AD、AC的長(zhǎng).
分析:連接OA,OD,根據(jù)弧AD的長(zhǎng)可求得圓的半徑,利用解直角三角形求得AD,AC的長(zhǎng).
解答:精英家教網(wǎng)解:連接OA,OD
∵∠DCA=45°
∴∠AOD=90°
AD
的長(zhǎng)為
90π•OA
180
=
2
2
π
∴OA=OD=
2

∴AD=
OA2+OD2
=
4
=2
∵AB為⊙O切線
∴OA⊥AB
∴C為Rt△AOB斜邊中點(diǎn).
∴AC=OC=OA=
2
點(diǎn)評(píng):本題的關(guān)鍵是利用弧長(zhǎng)公式求得圓的半徑,然后再求線段的長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點(diǎn),過點(diǎn)M作DM⊥AB,交弦AC于點(diǎn)E,交⊙O于點(diǎn)F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點(diǎn)C,AD⊥MN于D,AD交⊙O于E,AB的延長(zhǎng)線交MN于點(diǎn)P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點(diǎn)E是
AD
的中點(diǎn),連接BE交AC于點(diǎn)G,BG的垂直平分線CF交BG于H交AB于F點(diǎn).
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點(diǎn)B的弦BD⊥OC交⊙O于點(diǎn)D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當(dāng)BC=BD,且BD=12cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊(cè)答案