若a<0,點M(1,a)在( 。

A.  第一象限 B.   第二象限 C.   第三象限 D.  第四象限

 

【答案】

D

【解析】

試題分析:直接根據(jù)第四象限內(nèi)點的坐標(biāo)特征進行判斷.

解:∵a<0,

∴點M(1,a)在第四象限.

故選D.

點評:本題考查了點的坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對是一一對應(yīng)的關(guān)系.坐標(biāo):直角坐標(biāo)系把平面分成四部分,分別叫第一象限,第二象限,第三象限,第四象限.坐標(biāo)軸上的點不屬于任何一個象限.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為( 。
A、
1
2
B、
1
3
C、
1
4
D、
2
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點在x軸上方.設(shè)M是直線x=-1左側(cè)拋物線上的一動點,過點M作x軸的垂線MG,垂足為G,過點M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點,若M點的橫坐標(biāo)為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關(guān)于x的函數(shù)解析式;
(3)是否存在點M,使矩形MNHG的周長最小?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•桂平市三模)如圖,在平面直角坐標(biāo)系中拋物線y=x2+bx+c與x軸交于A(x1,0)、B(x2,0)兩點,與y軸交于點C,且x1、x2(x1<x2)是方程(x+1)(x-3)=0的兩個根.
(1)求拋物線的解析式及點C坐標(biāo);
(2)若點D是線段BC上一動點,過點D的直線EF平行y軸交x軸于點F,交拋物線于點E.求DE長的最大值;
(3)試探究當(dāng)DE取最大值時,在拋物線x軸下方是否存在點P,使以D、F、B、P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A,B,點A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)在x軸上是否存在點M,使得△ACM是等腰三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由;
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.△CQE的面積S是否有最大值?如果有最大值,請求出這個最大值,并求出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,在平面直角坐標(biāo)系中,A(a,0)、B(0,b),a、b滿足
a-b
+|a-3
2
|=0
.C為AB的中點,P是線段AB上一動點,D是x軸正半軸上一點,且PO=PD,DE⊥AB于E.
(1)求∠OAB的度數(shù);
(2)設(shè)AB=6,當(dāng)點P運動時,PE的值是否變化?若變化,說明理由;若不變,請求PE的值;
(3)設(shè)AB=6,若∠OPD=45°,求點D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案