精英家教網 > 初中數學 > 題目詳情

【題目】已知:①線段,②等邊三角形,③正方形,④圓,其中既是軸對稱又是中心對稱的圖形是(

A.①②③B.②③④C.①③④D.①②④

【答案】C

【解析】

由題意直接根據軸對稱圖形與中心對稱圖形的概念進行判斷分析求解.

解:①線段,既是軸對稱圖形又是中心對稱圖形;

②等邊三角形是軸對稱圖形;

③正方形既是軸對稱圖形又是中心對稱圖形;

④圓既是軸對稱圖形又是中心對稱圖形;

∴既是軸對稱圖形又是中心對稱圖形的序號是①③④.

故選:C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某花卉種植基地欲購進甲、乙兩種君子蘭進行培育。若購進甲種2株,乙種3株,則共需成本l700元;若購進甲種3株,乙種l.則共需成本l500元。

(1)求甲、乙兩種君子蘭每株成本分別為多少元?

(2)該種植基地決定在成本不超過30000元的前提下購入甲、乙兩種君子蘭,若購入乙種君子蘭的株數比甲種君子蘭的3倍還多10株,求最多購進甲種君子蘭多少株?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點B順時針旋轉,旋轉角為α(0°<α<180°)

(1)當∠BAC=60°時,將BP旋轉到圖2位置,點D在射線BP上.若∠CDP=120°,則∠ACD ∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數量關系是

(2)當∠BAC=120°時,將BP旋轉到圖3位置,點D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;

(3)將圖3中的BP繼續(xù)旋轉,當30°<α<180°時,點D是直線BP上一點(點P不在線段BD上),若∠CDP=120°,請直接寫出線段BD、CD與AD之間的數量關系(不必證明).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算(﹣2a32的結果是(
A.﹣4a5
B.4a5
C.﹣4a6
D.4a6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知O為原點,四邊形ABCD為平行四邊形,A、B、C的坐標分別是A(﹣5,1),B(﹣2,4),C(5,4),點D在第一象限.
(1)寫出D點的坐標;
(2)求經過B、D兩點的直線的解析式,并求線段BD的長;
(3)將平行四邊形ABCD先向右平移1個單位長度,再向下平移1個單位長度所得的四邊形A1B1C1D1四個頂點的坐標是多少?并求出平行四邊形ABCD與四邊形A1B1C1D1重疊部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點.若AB=5,AD=12,則四邊形ABOM的周長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(本題滿分10分)如圖,△ABC是⊙O的內接三角形,AD是⊙O的直徑,∠ABC=60°,∠ACB=50°,請解答下列問題:

(1)求∠CAD的度數;

(2)設AD、BC相交于E,AB、CD的延長線相交于F,求∠AEC、∠AFC的度數;

(3)若AD=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=-1,且拋物線經過A(1,0),C(0,3)兩點,與x軸交于點B

(1)若直線y=mx+n經過BC兩點,求直線BC和拋物線的解析式;

(2)在拋物線的對稱軸x=-1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;

(3)設點P為拋物線的對稱軸x=-1上的一個動點,求使△BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是( )

A. 等邊三角形 B. 平行四邊形 C. 等腰三角形 D. 菱形

查看答案和解析>>

同步練習冊答案