【題目】小紅同學(xué)要測(cè)量兩地的距離,但,之間有一水池,不能直接測(cè)量,于是她在,同一水平面上選取了一點(diǎn),點(diǎn)可直接到達(dá),兩地.她測(cè)量得到米,米,.請(qǐng)你幫助小紅同學(xué)求出兩點(diǎn)之間的距離.

【答案】(米)

【解析】

首先過(guò)CCDABAB延長(zhǎng)線于點(diǎn)D,然后可得∠BCD=30°,再根據(jù)直角三角形的性質(zhì)可得BD=10米,然后利用勾股定理計(jì)算出CD長(zhǎng),再次利用勾股定理計(jì)算出AC長(zhǎng)即可.

解:過(guò)CCDABAB延長(zhǎng)線于點(diǎn)D

∵∠ABC=120°,

∴∠CBD=60°

RtBCD中,∠BCD=90°-CBD=30°,

BD=BC=×20=10(米),

CD= (米),

AD=AB+BD=70+10=80米,

RtACD中,(米),

答:A、C兩點(diǎn)之間的距離為米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ADBC,EGBC,垂足分別為D、G、AD平分∠BAC,求證:∠E=4.

證明:∵ADBC,EGBC(已知)

ADEG( )

∴∠2=3( )

1= (兩直線平行,同位角相等)

AD平分∠BAC(已知)

∴∠1=2( )

∴∠E=3( )

∵∠3=4( )

∴∠E=4(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小瑩用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB8cm,BC長(zhǎng)為10cm.當(dāng)小瑩折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F(折痕為AE).則此時(shí)EC=(  )cm

A.4B.C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某飲料經(jīng)營(yíng)部每天的固定成本為200元,其銷(xiāo)售的飲料每瓶進(jìn)價(jià)為5元.銷(xiāo)售單價(jià)與日平均銷(xiāo)售的關(guān)系如下:

銷(xiāo)售單價(jià)(元)

6

6.5

7

7.5

8

8.5

9

日平均銷(xiāo)售量(瓶)

480

460

440

420

400

380

360

(1)若記銷(xiāo)售單價(jià)比每瓶進(jìn)價(jià)多x元,則銷(xiāo)售量為_____(用含x的代數(shù)式表示);

求日均毛利潤(rùn)(日均毛利潤(rùn)=(每瓶售價(jià)-每瓶進(jìn)價(jià))×日均銷(xiāo)售量-固定成本)yx之間的函數(shù)關(guān)系式.

(2)若要使日均毛利潤(rùn)達(dá)到1400元,則銷(xiāo)售單價(jià)應(yīng)定為多少元?

(3)若要使日均毛利潤(rùn)達(dá)到最大,銷(xiāo)售單價(jià)應(yīng)定為多少元?最大日均毛利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為,C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著的路線移動(dòng)即:沿著長(zhǎng)方形移動(dòng)一周

寫(xiě)出點(diǎn)B的坐標(biāo)______

當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).

在移動(dòng)過(guò)程中,當(dāng)點(diǎn)Px軸距離為5個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一次函數(shù),下列結(jié)論正確的是( )

A.函數(shù)值隨自變量的增大而增大

B.函數(shù)的圖象不經(jīng)過(guò)第一象限

C.函數(shù)的圖象向下平移4個(gè)單位長(zhǎng)度得的圖象

D.函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CBy,y軸負(fù)半軸于B(0,b),(a-3)2+|b+4|=0,S四邊形AOBC=16.

(1)求C點(diǎn)坐標(biāo);

(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)ADAC時(shí),ODA的角平分線與∠CAE的角平分線的反向延長(zhǎng)線交于點(diǎn)P,求∠APD的度數(shù).

(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),DMADBCM點(diǎn),BMD、DAO的平分線交于N點(diǎn),D點(diǎn)在運(yùn)動(dòng)過(guò)程中,N的大小是否變化?若不變,求出其值,若變化,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn) A﹣20),B20),C0,2,點(diǎn) D,點(diǎn)E分別是 AC,BC的中點(diǎn),將CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到CDE,及旋轉(zhuǎn)角為α,連接 AD,BE

1如圖,若 α90°,當(dāng) AD′∥CE時(shí),求α的大小;

2如圖,若 90°α180°,當(dāng)點(diǎn) D落在線段 BE上時(shí),求 sin∠CBE的值;

3若直線AD與直線BE相交于點(diǎn)P,求點(diǎn)P的橫坐標(biāo)m的取值范圍直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),平行四邊形ABCD的邊BC在x軸上,D點(diǎn)在y軸上,C點(diǎn)坐標(biāo)為(2,0),BC=6,BCD=60°,點(diǎn)E是AB上一點(diǎn),AE=3EB,P過(guò)D,O,C三點(diǎn),拋物線過(guò)點(diǎn)D,B,C三點(diǎn)

(1)求拋物線的解析式;

(2)求證:ED是P的切線;

(3)若將ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,E點(diǎn)的對(duì)應(yīng)點(diǎn)E′會(huì)落在拋物線上嗎?請(qǐng)說(shuō)明理由;

(4)若點(diǎn)M為此拋物線的頂點(diǎn),平面上是否存在點(diǎn)N,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案