【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)當(dāng)點(diǎn)D在AC上時(shí),如下面圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請(qǐng)直接寫出結(jié)論,不需要證明.
(2)將下面圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),如下圖2,上述關(guān)系是否成立?如果成立請(qǐng)說(shuō)明理由.
【答案】(1);(2)成立,見解析
【解析】
(1)根據(jù)SAS推知△ABD≌△ACE,然后由全等三角形的性質(zhì)得出BD=CE,∠ABD=∠EAC,然后在△ABD和△CDF中,由三角形內(nèi)角和定理可以求得∠CFD=90°,即BD⊥CE;
(2)根據(jù)SAS推知△ABD≌△ACE,然后由全等三角形的性質(zhì)得出BD=CE,∠ABF=∠ECA,作輔助線BH構(gòu)建對(duì)頂角,再根據(jù)三角形內(nèi)角和即可得解.
(1)BD=CE,BD⊥CE;理由如下:
∵∠BAC=∠DAE=90°
∴∠BAD-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE
在△ABD與△ACE中,
∵AB=AC,∠BAD=∠CAE,AD=AE
∴△ABD≌△ACE(SAS)
∴BD=CE
延長(zhǎng)BD交EC于F,如圖所示:
由△ABD≌△ACE,得∠ABD=∠EAC
∵∠ADB=∠CDF
∴∠CFD=∠DAB=90°
∴BD⊥CE;
(2)成立;理由如下:
延長(zhǎng)BD交AC于F,交CE于H,如圖所示:
∵∠BAC=∠DAE=90°
∴∠BAD-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE
在△ABD與△ACE中,
∵AB=AC,∠BAD=∠CAE,AD=AE
∴△ABD≌△ACE(SAS)
∴BD=CE
在△ABF與△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC
∴∠CHF=∠BAF=90°
∴BD⊥CE
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰直角三角形ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑.
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由我國(guó)完全自主設(shè)計(jì)、自主建造的首艘國(guó)產(chǎn)航母于2018年5月成功完成第一次海上試驗(yàn)任務(wù).如圖,航母由西向東航行,到達(dá)處時(shí),測(cè)得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時(shí)間后到達(dá)B處,測(cè)得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長(zhǎng).
(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1 ,等腰直角三角形 ABC 中,∠ACB=90°,CB=CA,直線 DE 經(jīng)過(guò)點(diǎn) C,過(guò) A 作 AD⊥DE 于點(diǎn) D,過(guò) B 作 BE⊥DE 于點(diǎn) E,則△BEC≌△CDA,我們稱這種全等模型為 “K 型全等”.(不需要證明)
(模型應(yīng)用)若一次函數(shù) y=kx+4(k≠0)的圖像與 x 軸、y 軸分別交于 A、B 兩點(diǎn).
(1)如圖 2,當(dāng) k=-1 時(shí),若點(diǎn) B 到經(jīng)過(guò)原點(diǎn)的直線 l 的距離 BE 的長(zhǎng)為 3,求點(diǎn) A 到直線 l 的距離 AD 的長(zhǎng);
(2)如圖 3,當(dāng) k=- 時(shí),點(diǎn) M 在第一象限內(nèi),若△ABM 是等腰直角三角形,求點(diǎn)
M 的坐標(biāo);
(3)當(dāng) k 的取值變化時(shí),點(diǎn) A 隨之在 x 軸上運(yùn)動(dòng),將線段 BA 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn) 90° 得到 BQ,連接 OQ,求 OQ 長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:□ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2-mx+-=0的兩個(gè)實(shí)數(shù)根.
(1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么□ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解下列方程時(shí),配方有錯(cuò)誤的是( )
A.x2﹣2x﹣99=0化為(x﹣1)2=100
B.x2+8x+9=0化為(x+4)2=25
C.2t2﹣7t﹣4=0化為(t﹣)2=
D.3x2﹣4x﹣2=0化為(x﹣)2=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列4個(gè)命題:其中真命題是( )
(1)三角形的外角和是180°;(2)三角形的三個(gè)內(nèi)角中至少有兩個(gè)銳角;
(3)如果<0,那么y<0;(4)直線a、b、c,如果a⊥b、b⊥c,那么a⊥c.
A. (1)(2) B. (2)(3) C. (2)(4) D. (3)(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E、F分別在邊AB、BC、CA上,且DE∥CA,DF∥BA.
下列四種說(shuō)法:①四邊形AEDF是平行四邊形;②如果∠BAC=90°,那么四邊形AEDF是矩形;③如果AD平分∠BAC,那么四邊形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四邊形AEDF是菱形.
其中,正確的有( ) 個(gè).
A.1 B.2 C.3 D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com