9、已知2m•2m•8=211,則m=
4
分析:將已知中的2m•2m•8化為同底數(shù)的冪,然后利用同底數(shù)冪的乘法法則進(jìn)行計(jì)算,再根據(jù)指數(shù)相同列式求解即可.
解答:解:2m•2m•8,
=2m•2m•23
=2m+m+3,
∵2m•2m•8=211
∴m+m+3=11,
解得m=4.
點(diǎn)評(píng):運(yùn)用同底數(shù)冪的乘法法則時(shí)需要注意:
(1)三個(gè)或三個(gè)以上同底數(shù)冪相乘時(shí),也具有這一性質(zhì):am•an•ap=am+n+p相乘時(shí)(m、n、p均為正整數(shù));
(2)公式的特點(diǎn):左邊是兩個(gè)或兩個(gè)以上的同底數(shù)冪相乘,右邊是一個(gè)冪指數(shù)相加.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程mx2-(3m-2)x+2m-2=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;
(2)在(1)的條件下,求證:無(wú)論m取何值,拋物線y=mx2-(3m-2)x+2m-2總過(guò)x軸上的一個(gè)固定點(diǎn);
(3)若m為正整數(shù),且關(guān)于x的一元二次方程mx2-(3m-2)x+2m-2=0有兩個(gè)不相等的整數(shù)根,把拋物線y=mx2-(3m-2)x+2m-2向右平移4個(gè)單位長(zhǎng)度,求平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:關(guān)于x的一元二次方程mx2-(3m-2)x+2m-2=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;
(2)在(1)的條件下,求證:無(wú)論m取何值,拋物線y=mx2-(3m-2)x+2m-2總過(guò)x軸上的一個(gè)固定點(diǎn);
(3)若m為正整數(shù),且關(guān)于x的一元二次方程mx2-(3m-2)x+2m-2=0有兩個(gè)不相等的整數(shù)根,把拋物線y=mx2-(3m-2)x+2m-2向右平移4個(gè)單位長(zhǎng)度,求平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年北京市人大附中中考數(shù)學(xué)沖刺試卷(十)(解析版) 題型:解答題

已知:關(guān)于x的一元二次方程mx2-(3m-2)x+2m-2=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;
(2)在(1)的條件下,求證:無(wú)論m取何值,拋物線y=mx2-(3m-2)x+2m-2總過(guò)x軸上的一個(gè)固定點(diǎn);
(3)若m為正整數(shù),且關(guān)于x的一元二次方程mx2-(3m-2)x+2m-2=0有兩個(gè)不相等的整數(shù)根,把拋物線y=mx2-(3m-2)x+2m-2向右平移4個(gè)單位長(zhǎng)度,求平移后的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年北京市房山區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知:關(guān)于x的一元二次方程mx2-(3m-2)x+2m-2=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求m的取值范圍;
(2)在(1)的條件下,求證:無(wú)論m取何值,拋物線y=mx2-(3m-2)x+2m-2總過(guò)x軸上的一個(gè)固定點(diǎn);
(3)若m為正整數(shù),且關(guān)于x的一元二次方程mx2-(3m-2)x+2m-2=0有兩個(gè)不相等的整數(shù)根,把拋物線y=mx2-(3m-2)x+2m-2向右平移4個(gè)單位長(zhǎng)度,求平移后的拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案