【題目】如圖,△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,AE=BD,連接DE,過(guò)點(diǎn)E作EF⊥DE,交線(xiàn)段BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:CE=CF;
(2)若BD=CE,AB=9,求線(xiàn)段DF的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)12.
【解析】
(1)由題意可證△DEC是等邊三角形,可求∠ECD=∠DEC=60°,根據(jù)三角形外角等于不相鄰的兩個(gè)內(nèi)角的和,可求∠CEF=∠CFE=30°,即可得CE=CF;
(2)由題意可得BD=3,CD=6,即可求DF的長(zhǎng).
(1)∵△ABC是等邊三角形
∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°
∵AE=BD
∴AC﹣AE=BC﹣BD
∴CE=CD,且∠ACB=60°
∴△CDE是等邊三角形
∴∠ECD=∠DEC=60°
∵EF⊥DE
∴∠DEF=90°
∴∠CEF=30°
∵∠DCE=∠CEF+∠CFE=60°
∴∠CEF=∠CFE=30°
∴CE=CF
(2)∵BD=CE,CE=CD
∴BD=CD
∵AB=9
∴BC=9
∴BD=3,CD=6
∵CE=CF=CD
∴CF=6
∴DF=DC+CF=12
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實(shí)數(shù)根,比如對(duì)于方程 ,操作步驟是:
第一步:根據(jù)方程系數(shù)特征,確定一對(duì)固定點(diǎn)A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動(dòng)一個(gè)直角三角板,使一條直角邊恒過(guò)點(diǎn)A,另一條直角邊恒過(guò)點(diǎn)B;
第三步:在移動(dòng)過(guò)程中,當(dāng)三角板的直角頂點(diǎn)落在x軸上點(diǎn)C處時(shí),點(diǎn)C 的橫坐標(biāo)m即為該方程的一個(gè)實(shí)數(shù)根(如圖1)
第四步:調(diào)整三角板直角頂點(diǎn)的位置,當(dāng)它落在x軸上另一點(diǎn)D處時(shí),點(diǎn)D 的橫坐標(biāo)為n即為該方程的另一個(gè)實(shí)數(shù)根。
(1)在圖2 中,按照“第四步“的操作方法作出點(diǎn)D(請(qǐng)保留作出點(diǎn)D時(shí)直角三角板兩條直角邊的痕跡)
(2)結(jié)合圖1,請(qǐng)證明“第三步”操作得到的m就是方程 的一個(gè)實(shí)數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個(gè)固定點(diǎn)的位置,若要以此方法找到一元二次方程 的實(shí)數(shù)根,請(qǐng)你直接寫(xiě)出一對(duì)固定點(diǎn)的坐標(biāo);
(4)實(shí)際上,(3)中的固定點(diǎn)有無(wú)數(shù)對(duì),一般地,當(dāng) , , , 與a,b,c之間滿(mǎn)足怎樣的關(guān)系時(shí),點(diǎn)P( , ),Q( , )就是符合要求的一對(duì)固定點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,2條直線(xiàn) 最多有=1個(gè)交點(diǎn),3條直線(xiàn)最多有=3個(gè)交點(diǎn),4條直線(xiàn)最多有=6個(gè)交點(diǎn),……由此猜想,8條直線(xiàn)最多有___個(gè)交點(diǎn).
A. 32 B. 16 C. 28 D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮與小明做投骰子(質(zhì)地均勻的正方體)的實(shí)驗(yàn)與游戲.
(1)在實(shí)驗(yàn)中他們共做了50次試驗(yàn),試驗(yàn)結(jié)果如下:
朝上的點(diǎn)數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 10 | 9 | 6 | 9 | 8 | 8 |
①填空:此次實(shí)驗(yàn)中,“1點(diǎn)朝上”的頻率是 ;
(2)在游戲時(shí)兩人約定:每次同時(shí)擲兩枚骰子,如果兩枚骰子的點(diǎn)數(shù)之和超過(guò)6,則小亮獲勝,否則小明獲勝.則小亮與小明誰(shuí)獲勝的可能性大?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在邊AB上,點(diǎn)E在邊AC上,CE=BD,連接CD,BE,BE與CD相交于點(diǎn)F.
(1)如圖1,若△ACD為等邊三角形,且CE=DF,求∠CEF的度數(shù);
(2)如圖2,若AC=AD,求證:EF=FB;
(3)如圖3,在(2)的條件下,若∠CFE=45°,△BCD的面積為4,求線(xiàn)段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一內(nèi)部裝有水的直圓柱形水桶,桶高20公分;另有一直圓柱形的實(shí)心鐵柱,柱高30公分,直立放置于水桶底面上,水桶內(nèi)的水面高度為12公分,且水桶與鐵柱的底面半徑比為2:1.今小賢將鐵柱移至水桶外部,過(guò)程中水桶內(nèi)的水量未改變,若不計(jì)水桶厚度,則水桶內(nèi)的水面高度變?yōu)槎嗌俟?( 。?/span>
A.4.5
B.6
C.8
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y=ax2+bx的圖象過(guò)點(diǎn)A(﹣1,3),頂點(diǎn)B的橫坐標(biāo)為1.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)點(diǎn)P在該二次函數(shù)的圖象上,點(diǎn)Q在x軸上,若以A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)如圖3,一次函數(shù)y=kx(k>0)的圖象與該二次函數(shù)的圖象交于O、C兩點(diǎn),點(diǎn)T為該二次函數(shù)圖象上位于直線(xiàn)OC下方的動(dòng)點(diǎn),過(guò)點(diǎn)T作直線(xiàn)TM⊥OC,垂足為點(diǎn)M,且M在線(xiàn)段OC上(不與O、C重合),過(guò)點(diǎn)T作直線(xiàn)TN∥y軸交OC于點(diǎn)N.若在點(diǎn)T運(yùn)動(dòng)的過(guò)程中, 為常數(shù),試確定k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+c與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,過(guò)點(diǎn)C作CD∥x軸,與拋物線(xiàn)交于點(diǎn)D,若OA=1,CD=4,則線(xiàn)段AB的長(zhǎng)為( )
A.2
B.1
C.3
D.1.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com