【題目】如圖,的直徑,弦,,,則由,,圍成的圖形(圖中陰影部分)的面積為(

A. B. π C. D.

【答案】C

【解析】

連接AD,即可證明AOD是等邊三角形,在直角ACE中利用勾股定理求得AE的長,則可以證明AE=OE,證明ACE≌△OED,則S陰影=S扇形OAD,利用扇形的面積公式求解.

連接AD.

∵∠AOD=2ACD=60°,

又∵OA=OD,

∴△AOD是等邊三角形.

AB是⊙O的直徑,弦CDAB,

CE=DE=CD=3,,

AD=AC,

又∵∠ACD=30°,

AE=CEtan30°=3×=,AC=,

AD=AC=OA=2,

AE=OE,

ACEODE中,

,

∴△ACE≌△OED(SAS),

S陰影=S扇形OAD==2π.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖的ABC中,ABACBC,且DBC上一點,F(xiàn)打算在AB上找一點P,在AC上找一點Q,使得APQ與以P、D、Q為頂點的三角形全等,以下是甲、乙兩人的作法:

甲:連接AD,作AD的中垂線分別交AB、ACP點、Q點,則P、Q兩點即為所求;

乙:過D作與AC平行的直線交ABP點,過D作與AB平行的直線交ACQ點,則P、Q兩點即為所求;

對于甲、乙兩人的作法,下列判斷何者正確( 。?

A.兩人皆正確B.兩人皆錯誤C.甲正確,乙錯誤D.甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l過點M(3,0),且平行于y軸.

(1)如果△ABC三個頂點的坐標分別是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC關(guān)于y軸的對稱圖形是△A1B1C1,△A1B1C1關(guān)于直線l的對稱圖形是△A2B2C2,寫出△A2B2C2的三個頂點的坐標;

(2)如果點P的坐標是(﹣a,0),其中0<a<3,點P關(guān)于y軸的對稱點是P1,點P1關(guān)于直線l的對稱點是P2,求PP2的長.

備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的直徑,點、上,,過點作,垂足為

的長;

的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市2013~2017年常住人口數(shù)統(tǒng)計如圖所示.

根據(jù)圖中提供的信息,回答下列問題:

(1)該市常住人口數(shù),2017年比2016年增加了______萬人;

(2)與上一年相比,該市常住人口數(shù)增加最多的年份是____________;

(3)預測2018年該市常住人口數(shù)大約為多少萬人?請用所學的統(tǒng)計知識說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊AOB的邊長為4,以O為坐標原點,OB所在直線為x軸建立如圖所示的平面直角坐標系.

1)求點A的坐標;

2)若直線ykxk0)與線段AB有交點,求k的取值范圍;

3)若點Cx軸正半軸上,以線段AC為邊在第一象限內(nèi)作等邊ACD,求直線BD的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點C,過AADED于點D,過BBEED于點E.
求證:BEC≌△CDA;
(模型應用)
(2)①已知直線l1:y=x+4與坐標軸交于點A、B,將直線l1繞點A逆時針旋轉(zhuǎn)45o至直線l2,如圖2,求直線l2的函數(shù)表達式;
②如圖3,長方形ABCO,O為坐標原點,點B的坐標為(8,-6),點A、C分別在坐標軸上,點P是線段BC上的動點,點D是直線y=-2x+6上的動點且在第四象限.若APD是以點D為直角頂點的等腰直角三角形,請直接寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,A′B′C′ABC經(jīng)過平移得到的,ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。

(1)請寫出三角形ABC平移的過程;

(2)分別寫出點A′,B′,C′ 的坐標。

(3)求A′B′C′的面積。

查看答案和解析>>

同步練習冊答案