【題目】問(wèn)題呈現(xiàn):
(Ⅰ)如圖1,點(diǎn)E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD . (S表示面積)
(Ⅱ)實(shí)驗(yàn)探究:某數(shù)學(xué)實(shí)驗(yàn)小組發(fā)現(xiàn):若圖1中AH≠BF,點(diǎn)G在CD上移動(dòng)時(shí),上述結(jié)論會(huì)發(fā)生變化,分別過(guò)點(diǎn)E、G作BC邊的平行線(xiàn),再分別過(guò)點(diǎn)F、H作AB邊的平行線(xiàn),四條平行線(xiàn)分別相交于點(diǎn)A1、B1、C1、D1 , 得到矩形A1B1C1D1
如圖2,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)C靠近(DG>AE),經(jīng)過(guò)探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+S
如圖3,當(dāng)AH>BF時(shí),若將點(diǎn)G向點(diǎn)D靠近(DG<AE),請(qǐng)?zhí)剿鱏四邊形EFGH、S矩形ABCD與S 之間的數(shù)量關(guān)系,并說(shuō)明理由.
(Ⅲ)遷移應(yīng)用:
請(qǐng)直接應(yīng)用“實(shí)驗(yàn)探究”中發(fā)現(xiàn)的結(jié)論解答下列問(wèn)題:

⑴如圖4,點(diǎn)E、F、G、H分別是面積為25的正方形ABCD各邊上的點(diǎn),已知AH>BF,AE>DG,S四邊形EFGH=11,HF= ,求EG的長(zhǎng).

⑵如圖5,在矩形ABCD中,AB=3,AD=5,點(diǎn)E、H分別在邊AB、AD上,BE=1,DH=2,點(diǎn)F、G分別是邊BC、CD上的動(dòng)點(diǎn),且FG= ,連接EF、HG,請(qǐng)直接寫(xiě)出四邊形EFGH面積的最大值.

【答案】(Ⅰ)證明:如圖1中,

∵四邊形ABCD是矩形,
∴AB∥CD,∠A=90°,
∵AE=DG,
∴四邊形AEGD是矩形,
∴SHGE= S矩形AEGD ,
同理SEGF= S矩形BEGC
∴S四邊形EFGH=SHGE+SEFG= S矩形ABCD
(Ⅱ)實(shí)驗(yàn)探究:結(jié)論:2S四邊形EFGH=S矩形ABCD

理由:∵ = , = , = , =
∴S四邊形EFGH= + + + ,
∴2S四邊形EFGH=2 +2 +2 +2 ﹣2 ,
∴2S四邊形EFGH=S矩形ABCD
(Ⅲ)遷移應(yīng)用:解:(1)如圖4中,

∵2S四邊形EFGH=S矩形ABCD
=25﹣2×11=3=A1B1A1D1
∵正方形的面積為25,∴邊長(zhǎng)為5,
∵A1D12=HF2﹣52=29﹣25=4,
∴A1D1=2,A1B1= ,
∴EG2=A1B12+52= ,
∴EG=
⑵解:∵2S四邊形EFGH=S矩形ABCD+
∴四邊形A1B1C1D1面積最大時(shí),矩形EFGH的面積最大.
①如圖5﹣1中,當(dāng)G與C重合時(shí),四邊形A1B1C1D1面積最大時(shí),矩形EFGH的面積最大.
此時(shí)矩形A1B1C1D1面積=1( ﹣2)=

②如圖5﹣2中,當(dāng)G與D重合時(shí),四邊形A1B1C1D1面積最大時(shí),矩形EFGH的面積最大.
此時(shí)矩形A1B1C1D1面積=21=2,

∵2> ﹣2,
∴矩形EFGH的面積最大值=
【解析】(Ⅰ)問(wèn)題呈現(xiàn):只要證明SHGE= S矩形AEGD , 同理SEGF= S矩形BEGC , 由此可得S四邊形EFGH=SHGE+SEFG= S矩形BEGC;(Ⅱ)實(shí)驗(yàn)探究:結(jié)論:2S四邊形EFGH=S矩形ABCD .根據(jù) = , = , = , = ,即可證明;(Ⅲ)遷移應(yīng)用:(1)利用探究的結(jié)論即可解決問(wèn)題.(2)分兩種情形探究即可解決問(wèn)題.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用矩形的性質(zhì),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線(xiàn)相等即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值和它對(duì)應(yīng),那么就說(shuō)y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當(dāng)自變量x=a時(shí),相應(yīng)的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當(dāng)x=4時(shí),f(4)=42﹣2×4﹣3=5在平面直角坐標(biāo)系xOy中,對(duì)于函數(shù)的零點(diǎn)給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)對(duì)應(yīng)的圖象是一條連續(xù)不斷的曲線(xiàn),并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)有零點(diǎn),即存在c(a≤c≤b),使f(c)=0,則c叫做這個(gè)函數(shù)的零點(diǎn),c也是方程f(x)=0在a≤x≤b范圍內(nèi)的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.

觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內(nèi)有零點(diǎn).由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點(diǎn),﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問(wèn)題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內(nèi)y1=f(x)的零點(diǎn)的個(gè)數(shù)是
(2)已知函數(shù)y2=f(x)=﹣ 的零點(diǎn)為x1 , x2 , 且x1<1<x2
①求零點(diǎn)為x1 , x2(用a表示);
②在平面直角坐標(biāo)xOy中,在x軸上A,B兩點(diǎn)表示的數(shù)是零點(diǎn)x1 , x2 , 點(diǎn) P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(P點(diǎn)與A、B兩點(diǎn)不重合),在x軸上方作等邊△APM和等邊△BPN,記線(xiàn)段MN的中點(diǎn)為Q,若a是整數(shù),求拋物線(xiàn)y2的表達(dá)式并直接寫(xiě)出線(xiàn)段PQ長(zhǎng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BD,連結(jié)CD.過(guò)點(diǎn)D作△BCD的BC邊上的高DE, 易證△ABC≌△BDE,從而得到△BCD的面積為
初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說(shuō)明理由.
簡(jiǎn)單應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BD,連結(jié)CD.直接寫(xiě)出△BCD的面積.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某市組織的大型商業(yè)演出活動(dòng)中,對(duì)團(tuán)體購(gòu)買(mǎi)門(mén)票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)80元,這樣按原定票價(jià)需花費(fèi)6000元購(gòu)買(mǎi)的門(mén)票張數(shù),現(xiàn)在只花費(fèi)了4800元.
(1)求每張門(mén)票的原定票價(jià);
(2)根據(jù)實(shí)際情況,活動(dòng)組織單位決定對(duì)于個(gè)人購(gòu)票也采取優(yōu)惠政策,原定票價(jià)經(jīng)過(guò)連續(xù)二次降價(jià)后降為324元,求平均每次降價(jià)的百分率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說(shuō)明理由;
(2)求證:過(guò)點(diǎn)A、F的直線(xiàn)垂直平分線(xiàn)段BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.若AC=8,AB=10,則CD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線(xiàn)y=ax2+bx+4過(guò)點(diǎn)B,C兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D(﹣2,0),點(diǎn)P是線(xiàn)段CB上的動(dòng)點(diǎn),設(shè)CP=t(0<t<10).

(1)請(qǐng)直接寫(xiě)出B、C兩點(diǎn)的坐標(biāo)及拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)P作PE⊥BC,交拋物線(xiàn)于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBE=∠OCD?
(3)點(diǎn)Q是x軸上的動(dòng)點(diǎn),過(guò)點(diǎn)P作PM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),請(qǐng)求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著社會(huì)經(jīng)濟(jì)的發(fā)展和城市周邊交通狀況的改善,旅游已成為人們的一種生活時(shí)尚,洪祥中學(xué)開(kāi)展以“我最喜歡的風(fēng)景區(qū)”為主題的調(diào)查活動(dòng),圍繞“在松峰山、太陽(yáng)島、二龍山和鳳凰山四個(gè)風(fēng)景區(qū)中,你最喜歡哪一個(gè)?(必選且只選一個(gè))”的問(wèn)題,在全校范圍內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若洪祥中學(xué)共有1350名學(xué)生,請(qǐng)你估計(jì)最喜歡太陽(yáng)島風(fēng)景區(qū)的學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB,AC為⊙O的弦,AB=AC,連接AO.
(1)如圖l,求證:∠OAC=∠OAB;
(2)如圖2,過(guò)點(diǎn)B作AC的垂線(xiàn)交⊙O于點(diǎn)D,連接CD,設(shè)AO的延長(zhǎng)線(xiàn)交BD于點(diǎn)E,求證:BE=CD;
(3)在(2)的條件下,如圖3,點(diǎn)F,G分別在CD,BD的延長(zhǎng)線(xiàn)上,連接AG,AF,若CF×AG=8,∠GAB=45°+ ∠GAE,∠B=50°,求△ACF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案