【題目】如圖,王大伯家屋后有一塊長12m、寬8m的長方形空地,他在以較長邊BC為直徑的半圓內(nèi)種菜,他家養(yǎng)的一只羊平時拴在A處的一棵樹上,為了不讓羊吃到菜,拴羊的繩長最長不超過( )
A.3m
B.4m
C.5m
D.6m
【答案】B
【解析】解:連接OA,交⊙O于E點(diǎn),
在Rt△OAB中,OB=6m,BA=8m,
所以O(shè)A= =10m;
又因?yàn)镺E=OB=6m,
所以AE=OA﹣OE=4m.
因此拴羊的繩長最長不超過4m.
所以答案是:B.
【考點(diǎn)精析】本題主要考查了點(diǎn)和圓的三種位置關(guān)系的相關(guān)知識點(diǎn),需要掌握圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)已知代數(shù)式(ax-3)(2x+4)-x2-b化簡后,不含x2項(xiàng)和常數(shù)項(xiàng).
(1)求a,b的值;
(2)求(2a+b)2-(a-2b)(a+2b)-3a(a-b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明
(1)如圖,FG∥CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG∥CD(已知)
∴∠2=
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC∥
∴∠B+ =180°
又∵∠B=50°
∴∠BDE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對應(yīng)點(diǎn).
(1)請畫出平移后的△DEF,并求△DEF的面積;
(2)若連接AD、CF,則這兩條線段之間的關(guān)系是________________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解方程組的方法,回答問題.
解方程組
解:由①﹣②得2x+2y=2即x+y=1③
③×16得16x+16y=16④
②﹣④得x=﹣1,從而可得y=2
∴原方程組的解是
(1)請你仿照上面的解法解方程組;
(2)請大膽猜測關(guān)于x、y的方程組
的解是什么?并利用方程組的解加以驗(yàn)證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)實(shí)驗(yàn)室:
制作4張全等的直角三角形紙片(如圖1),把這4張紙片拼成以弦長c為邊長的正方形構(gòu)成“弦圖”(如圖2),古代數(shù)學(xué)家利用“弦圖”驗(yàn)證了勾股定理.
探索研究:
(1)小明將“弦圖”中的2個三角形進(jìn)行了運(yùn)動變換,得到圖3,請利用圖3證明勾股定理;
數(shù)學(xué)思考:
(2)小芳認(rèn)為用其它的方法改變“弦圖”中某些三角形的位置,也可以證明勾股定理.請你想一種方法支持她的觀點(diǎn)(先在備用圖中補(bǔ)全圖形,再予以證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑為1的圓從原點(diǎn)沿數(shù)軸向左滾動一周,圓上與原點(diǎn)重合的點(diǎn)O到達(dá)O′,設(shè)點(diǎn)O′表示的數(shù)為a.
(1)求a的值;
(2)求﹣(a﹣)﹣π的算術(shù)平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,
(1)寫出A、B、C的坐標(biāo).
(2)以原點(diǎn)O為中心,將△ABC圍繞原點(diǎn)O逆時針旋轉(zhuǎn)180°得到△A1B1C1 , 畫出△A1B1C1 .
(3)求(2)中C到C1經(jīng)過的路徑以及OB掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com