【題目】在一個不透明的袋子中裝有紅、黃兩種顏色的球共20個,每個球除顏色外完全相同.某學習興趣小組做摸球實驗,將球攪勻后從中隨機摸出1個球,記下顏色后再放回袋中,不斷重復.下表是活動進行中的部分統(tǒng)計數(shù)據(jù).
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到紅球的次數(shù)m | 59 | 96 | 118 | 290 | 480 | 601 |
摸到紅球的頻率 | 0.59 | 0.58 | 0.60 | 0.601 |
(1)完成上表;
(2)“摸到紅球”的概率的估計值。ň_到0.1)
(3)試估算袋子中紅球的個數(shù).
【答案】(1)見解析;(2)0.6;(3)口袋中約有紅球12只.
【解析】
(1)用摸到紅球的次數(shù)除以所有摸球次數(shù)即可求得摸到紅球的概率;
(2)大量重復試驗頻率穩(wěn)定到的常數(shù)即可得到概率的估計值;
(3)用求得的摸到紅球的概率乘以球的總個數(shù)即可求得紅球的個數(shù).
解: (1)填表如下:
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到紅球的次數(shù)m | 59 | 96 | 118 | 290 | 480 | 601 |
摸到紅球的頻率 | 0.59 | 0.64 | 0.58 | 0.58 | 0.60 | 0.601 |
(2)觀察發(fā)現(xiàn)隨著實驗次數(shù)的增多,摸到紅球的頻率逐漸穩(wěn)定到常數(shù)0.6附近,
故“摸到紅球”的概率的估計值是0.6.
答:概率為0.6;
(3)20×0.6=12(只).
答:口袋中約有紅球12只.
故答案為:(1)見解析;(2)0.6;(3)12只.
科目:初中數(shù)學 來源: 題型:
【題目】釣魚島及周邊島嶼自古以來就是中國的領土.如圖,我海監(jiān)飛機在距海平面高度為2千米的C處測得釣魚島南北兩端A、B的俯角∠DCA=45°、∠DCB=30°(已知A、B、C三點在同一平面上),求釣魚島南北兩端A、B的距離.(參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=ax+b(a≠0)、二次函數(shù)y=ax2+bx和反比例函數(shù)y=(k≠0)在同一直角坐標系中的圖象如圖所示,A點的坐標為(-2,0),則下列結論中,正確的是( 。
A.b=2a+k B.a(chǎn)=b+k C.a(chǎn)>b>0 D.a(chǎn)>k>0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船以18海里/時的速度由西向東航行,在A處測得小島C在北偏東75°方向上,兩小時后,輪船在B處測得小島C在北偏東60°方向上,在小島周圍15海里處有暗礁,若輪船仍然按18海里/時的速度向東航行,請問是否有觸礁危險?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(6分)如圖①所示,將直尺擺放在三角板ABC上,使直尺與三角板的邊分別交于點D,E,F,G,量得∠CGD=42°。
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過三角板的頂點B,交AC邊于點H,如圖②所示.點H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(結果保留兩位小數(shù)).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩工程隊合作完成一項工程,需要12天完成,工程費用共36000元,若甲、乙兩工程隊單獨完成此項工程,乙工程隊所用的時間是甲工程隊的1.5倍,乙工程隊每天的費用比甲工程隊少800元.
(1)問甲、乙兩工程隊單獨完成此項工程各需多少天?
(2)若讓一個工程隊單獨完成這項工程,哪個工程隊的費用較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明與小亮玩游戲,如圖,兩組相同的卡片,每組三張,第一組卡片正面分別標有數(shù)字1,3,5;第二組卡片正面分別標有數(shù)字2,4,6.他們將卡片背面朝上,分組充分洗勻后,從每組卡片中各摸出一張,稱為一次游戲.當摸出的兩張卡片的正面數(shù)字之積小于10,則小明獲勝;當摸出的兩張卡片的正面數(shù)字之積超過10,則小亮獲勝.你認為這個游戲規(guī)則對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王勇和李明兩位同學在學習“概率”時,做投擲骰子(質地均勻的正方體)實驗,他們共做了30次實驗,實驗的結果如下:
朝上的點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 2 | 5 | 6 | 4 | 10 | 3 |
(1)分別計算這30次實驗中“3點朝上”的頻率和“5點朝上”的頻率;
(2)王勇說:“根據(jù)以上實驗可以得出結論:由于5點朝上的頻率最大,所以一次實驗中出現(xiàn)5點朝上的概率最大”;李明說:“如果投擲300次,那么出現(xiàn)6點朝上的次數(shù)正好是30次”.試分別說明王勇和李明的說法正確嗎?并簡述理由;
(3)現(xiàn)王勇和李明各投擲一枚骰子,請用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形ABC(頂點是網(wǎng)格線的交點的三角形)的頂點A,C的坐標分別為(﹣4,5),(﹣1,3).
(1)請作出△ABC關于y軸對稱的△A1B1C1;
(2)△A1B1C1的面積是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com