【題目】如圖,函數(shù)的圖像與軸、軸分別交于點、,與函數(shù)的圖像交于點,點的橫坐標為.
(1)求點的坐標;
(2)在軸上有一動點.
①若三角形是以為底邊的等腰三角形,求的值;
②過點作軸的垂線,分別交函數(shù)和的圖像于點、,若,求的值.
【答案】(1)A(12,0);(2)a=;(3)a=6.
【解析】
(1)先根據(jù)點M在直線y=x上求出M(3,3),把M(3,3)代入可計算出b=4,得到一次函數(shù)的解析式為,然后根據(jù)x軸上點的坐標特征可確定A點坐標為(12,0);
(2)①分別求出PB和PA的長,根據(jù)PA=PB列出方程,求出a的值即可;
②先表示出C(a,),D(a,a),根據(jù)CD=2CP列方程求解即可.
(1)∵點的橫坐標為,且點M在直線y=x上,
∴點M的橫坐標為3,
∴M(3,3)
把M(3,3)代入得,,解得,b=4,
∴,
當y=0時,x=12,
∴A(12,0),
(2)①對于,當x=0時,y=4,
∴B(0,4),
∵P(a,0),
∴PO=a,AP=12-a,
在Rt△BPO中,
∴
∵PA=PB,
∴,
解得,a=;
②∵P(a,0),
∴C(a,),D(a,a)
∴PC=,PD=a,
∴DC=PD-PC=,
∵,
∴=2(),
解得:a=6.
科目:初中數(shù)學 來源: 題型:
【題目】位于南岸區(qū)黃桷埡的文峰塔,有著“平安寶塔”之稱.某校數(shù)學社團對其高度 AB進行了測量.如圖,他們從塔底A的點B出發(fā),沿水平方向行走了13米,到達點C,然后沿斜坡CD繼續(xù)前進到達點D處,已知DC=BC.在點D處用測角儀測得塔頂A的仰角為42°(點A,B,C,D,E在同一平面內(nèi)).其中測角儀及其支架DE高度約為0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB約為( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
A. 22.5 米 B. 24.0 米 C. 28.0 米 D. 33.3 米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將等腰△ABC沿對稱軸折疊后,得到△ADC(△ADB),若,則稱等腰△ABC為“長月三角形”ABC.
(1)結(jié)合題目情境,請你判斷“長月三角形”一定會是______三角形.
(2)如圖2,C為線段AB上一點,分別以AC和BC為邊作“長月三角形”ACD和“長月三角形”BCE,連接AE、BD交于點O,AE與CD交于點P,CE與BD交于點M.
①求證:;
②求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上,如果BC=5,△ABC的面積是10,那么這個正方形的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中AC=BC,∠ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點D,過D點作⊙O的切線交AC于點E,連接B、D并延長交AC于點F.則下列結(jié)論錯誤的是( )
A. △ADE∽△ACO B. △AOC∽△BFC
C. △DEF∽△DOC D. CD2=DFDB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊中,邊長為.點從點出發(fā),沿方向運動,速度為;同時點從點出發(fā),沿方向運動,速度為,當兩個點有一個點到達終點時,另一個點隨之停止運動.設運動時間為,解答下列問題:
(1)當時,_______(用含的代數(shù)式表示);
(2)當時,求的值,并直接寫出此時為什么特殊的三角形?
(3)當,且時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過坐標原點,且與x軸交于A(﹣2,0).
(1)求此二次函數(shù)解析式及頂點B的坐標;
(2)在拋物線上有一點P,滿足S△AOP=3,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角三角形中,,,.將等腰直角形沿高剪開后,拼成圖2所示的正方形.
(1)如圖1,等腰直角三角形的面積是______________.
(2)如圖2,求正方形的邊長是多少?
(3)把正方形放到數(shù)軸上(如圖3),使得邊落到數(shù)軸上,其中一個端點所對應的數(shù)為-1,直接寫出另一個端點所對應的數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com