【題目】如圖,直線交軸于點(diǎn),交軸于點(diǎn),拋物線經(jīng)過點(diǎn),交軸于點(diǎn),點(diǎn)為拋物線上一動點(diǎn),過點(diǎn)作軸的垂線,交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
(1)求拋物線的解析式.
(2)當(dāng)點(diǎn)在直線下方的拋物線上運(yùn)動時(shí),求出長度的最大值.
(3)當(dāng)以,,為頂點(diǎn)的三角形是等腰三角形時(shí),求此時(shí)的值.
【答案】(1);(2)當(dāng)時(shí),線段的長度有最大值,最大值為;(3)的值為6或或或3
【解析】
(1)令即可得出點(diǎn)A的坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)利用待定系數(shù)法即可求得拋物線的解析式;
(2)由點(diǎn)D的橫坐標(biāo),可知點(diǎn)P和點(diǎn)D的坐標(biāo),再根據(jù)點(diǎn)在直線下方的拋物線上,即可表示PD解析式,并轉(zhuǎn)化為頂點(diǎn)式就可得出答案;
(3)根據(jù)題意分別表示出,,分當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí)三種情況分別求出m的值即可.
(1)對于,取,得,∴.
將,代入,
得解得
∴拋物線的解析式為.
(2)∵點(diǎn)的橫坐標(biāo)為,
∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
∵點(diǎn)在直線下方的拋物線上,
∴
.
∵,
當(dāng)時(shí),線段的長度有最大值,最大值為.
(3)由,,,得,
,.
當(dāng)為等腰三角形時(shí),有三種情況:
①當(dāng)時(shí),,即,
解得(不合題意,舍去),;
②當(dāng)時(shí),,即,解得,;
③當(dāng)時(shí),,即,解得.
綜上所述,的值為6或或或3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),,直線AB和CH交于點(diǎn)O,分別交于D、E兩點(diǎn),已知,,.
(1)嘗試探究:在圖(1)中,求DB和AD的長;
(2)類比延伸:平移AB使得A與H重合,如圖(2)所示,過點(diǎn)D作,若,求線段BF的長;
(3)拓展遷移:如圖(3),若的面積是10,點(diǎn)D、E分別位于AB、CA上,,點(diǎn)F在BC上且,,如果的面積和四邊形FCED的面積相等,求這個(gè)相等的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九章算術(shù)》“勾股”一章記載:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何?”譯文:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?(1丈=10尺,1尺=10寸)設(shè)長方形門的寬尺,可列方程為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的出行方式,隨機(jī)從全校2000名學(xué)生中抽取了300名學(xué)生進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制如下條形統(tǒng)計(jì)圖,下列說法不正確的是( )
A.樣本中步行人數(shù)最少
B.本次抽樣的樣本容量是300
C.樣本中坐公共汽車的人數(shù)占調(diào)查人數(shù)的50%
D.全校步行、騎自行車的人數(shù)的總和與坐公共汽車的人數(shù)一定相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】歡歡放學(xué)回家看到桌上有三個(gè)禮包,是爸爸送給歡歡和姐姐的禮物,其中禮包是芭比娃娃,和禮包都是智能對話機(jī)器人.這些禮包用外表一樣的包裝盒裝著,看不到里面的禮物.
(1)歡歡隨機(jī)地從桌上取出一個(gè)禮包,取出的是芭比娃娃的概率是多少?
(2)請用樹狀圖或列表法表示歡歡隨機(jī)地從桌上取出兩個(gè)禮包的所有可能結(jié)果,并求取出的兩個(gè)禮包都是智能對話機(jī)器人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于E.
(1)求證:BE=AD;(2)若∠DCE=15°,AB=2,求在四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的任意兩點(diǎn)M,N,給出如下定義:點(diǎn)M與點(diǎn)N的“折線距離”為:.
例如:若點(diǎn)M(-1,1),點(diǎn)N(2,-2),則點(diǎn)M與點(diǎn)N的“折線距離”為:.根據(jù)以上定義,解決下列問題:
(1)已知點(diǎn)P(3,-2).
①若點(diǎn)A(-2,-1),則d(P,A)= ;
②若點(diǎn)B(b,2),且d(P,B)=5,則b= ;
③已知點(diǎn)C(m,n)是直線上的一個(gè)動點(diǎn),且d(P,C)<3,求m的取值范圍.
(2)⊙F的半徑為1,圓心F的坐標(biāo)為(0,t),若⊙F上存在點(diǎn)E,使d(E,O)=2,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光線從空氣射入水中會發(fā)生折射現(xiàn)象,發(fā)生折射時(shí),滿足的折射定律如圖①所示:折射率(代表入射角,代表折射角).小明為了觀察光線的折射現(xiàn)象,設(shè)計(jì)了圖②所示的實(shí)驗(yàn);通過細(xì)管可以看見水底的物塊,但從細(xì)管穿過的直鐵絲,卻碰不上物塊,圖③是實(shí)驗(yàn)的示意圖,點(diǎn)A,C,B在同一直線上,測得,則光線從空射入水中的折射率n等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊AB在x軸正半軸上,點(diǎn)A與原點(diǎn)重合,點(diǎn)D的坐標(biāo)是 (3,4),反比例函數(shù)y=(k≠0)經(jīng)過點(diǎn)C,則k的值為( 。
A.12B.15C.20D.32
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com