【題目】如圖,在等腰△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB,垂足為E.
(1)求證:DE是⊙O的切線.
(2)若DE,∠C=30°,求的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)連接OD,只要證明OD⊥DE即可;
(2)連接AD,根據(jù)AC是直徑,得到∠ADC=90°,利用AB=AC得到BD=CD,解直角三角形求得BD,在Rt△ABD中,解直角三角形求得AD,根據(jù)題意證得△AOD是等邊三角形,即可OD=AD,然后利用弧長(zhǎng)公式求得即可.
(1)證明:連接OD;
∵OD=OC,
∴∠C=∠ODC,
∵AB=AC,
∴∠B=∠C,
∴∠B=∠ODC,
∴OD∥AB,
∴∠ODE=∠DEB;
∵DE⊥AB,
∴∠DEB=90°,
∴∠ODE=90°,
即DE⊥OD,
∴DE是⊙O的切線.
(2)連接AD,
∵AC是直徑,
∴∠ADC=90°,
∵AB=AC,
∴∠B=∠C=30°,BD=CD,
∴∠OAD=60°,
∵OA=OD,
∴△AOD是等邊三角形,
∴∠AOD=60°,
∵DE=,∠B=30°,∠BED=90°,
∴CD=BD=2DE=2,
∴OD=AD=tan30°CD,
∴的長(zhǎng)為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在等邊△ABC中, D, E, F分別為邊AB, BC, CA上的點(diǎn), 且滿足∠DEF=60°.
(1)求證:;
(2)若DE⊥BC且DE=EF, 求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)一種火爆的網(wǎng)紅電子產(chǎn)品,每件產(chǎn)品成本 16 元,工廠將該產(chǎn)品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià) y(元)與一次性批發(fā)量 x(件)(x為正整數(shù))之間滿 足如圖所示的函數(shù)關(guān)系.
(1)直接寫出 y與 x之間所滿足的函數(shù)關(guān)系式,并寫出自變量 x的取值范圍;
(2)若一次性批發(fā)量不低于 20 且不超過(guò) 60 件時(shí),求獲得的利潤(rùn) w 與 x 的函數(shù) 關(guān)系式,同時(shí)當(dāng)批發(fā)量為多少件時(shí),工廠獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰直角三角形中,,,點(diǎn)在斜邊上(),作,且,連接,如圖(1).
(1)求證:;
(2)延長(zhǎng)至點(diǎn),使得,與交于點(diǎn).如圖(2).
①求證:;
②求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某“綜合與實(shí)踐”小組開(kāi)展了測(cè)量本校旗桿高度的實(shí)踐活動(dòng),他們制訂了測(cè)量方案,并利用課余時(shí)間完成了實(shí)地測(cè)量.他們?cè)谄鞐U底部所在的平地上,選取兩個(gè)不同測(cè)點(diǎn),分別測(cè)量了該旗桿頂端的仰角以及這兩個(gè)測(cè)點(diǎn)之間的距離.為了減小測(cè)量誤差,小組在測(cè)量仰角的度數(shù)以及兩個(gè)測(cè)點(diǎn)之間的距離時(shí),都分別測(cè)量了兩次并取它們的平均值作為測(cè)量結(jié)果,測(cè)量數(shù)據(jù)如下表(不完整)
任務(wù)一:兩次測(cè)量A,B之間的距離的平均值是 m.
任務(wù)二:根據(jù)以上測(cè)量結(jié)果,請(qǐng)你幫助“綜合與實(shí)踐”小組求出學(xué)校學(xué)校旗桿GH的高度.
(參考數(shù)據(jù):sin25.7°≈0.43,cos25.7°≈0.90,tan25.7°≈0.48,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
任務(wù)三:該“綜合與實(shí)踐”小組在定制方案時(shí),討論過(guò)“利用物體在陽(yáng)光下的影子測(cè)量旗桿的高度”的方案,但未被采納.你認(rèn)為其原因可能是什么?(寫出一條即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面內(nèi)容,并按要求解決問(wèn)題: 問(wèn)題:“在平面內(nèi),已知分別有個(gè)點(diǎn),個(gè)點(diǎn),個(gè)點(diǎn),5 個(gè)點(diǎn),…,n 個(gè)點(diǎn),其中任意三 個(gè)點(diǎn)都不在同一條直線上.經(jīng)過(guò)每?jī)牲c(diǎn)畫(huà)一條直線,它們可以分別畫(huà)多少條直線? ” 探究:為了解決這個(gè)問(wèn)題,希望小組的同學(xué)們?cè)O(shè)計(jì)了如下表格進(jìn)行探究:(為了方便研 究問(wèn)題,圖中每條線段表示過(guò)線段兩端點(diǎn)的一條直線)
請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)幫助希望小組歸納,并直接寫出結(jié)論:當(dāng)平面內(nèi)有個(gè)點(diǎn)時(shí),直線條數(shù)為 ;
(2)若某同學(xué)按照本題中的方法,共畫(huà)了條直線,求該平面內(nèi)有多少個(gè)已知點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面內(nèi),給定不在同一直線上的點(diǎn)A,B,C,如圖所示.點(diǎn)O到點(diǎn)A,B,C的距離均等于a(a為常數(shù)),到點(diǎn)O的距離等于a的所有點(diǎn)組成圖形G,的平分線交圖形G于點(diǎn)D,連接AD,CD.
(1)求證:AD=CD;
(2)過(guò)點(diǎn)D作DEBA,垂足為E,作DFBC,垂足為F,延長(zhǎng)DF交圖形G于點(diǎn)M,連接CM.若AD=CM,求直線DE與圖形G的公共點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD與正方形CEFG,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線上,M是AF的中點(diǎn),連接DM,EM.
(1)填空:DM與EM數(shù)量關(guān)系和位置關(guān)系為 (直接填寫);
(2)若AB=4,設(shè)CE=x(0<x<4),△MEF面積為y,求y關(guān)于x的函數(shù)關(guān)系式[可利用(1)的結(jié)論],并求出y的最大值;
(3)如果將正方形CEFG繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度,我們發(fā)現(xiàn)DM與EM數(shù)量關(guān)系與位置關(guān)系仍未發(fā)生改變.
①若正方形ABCD邊長(zhǎng)AB=13,正方形CEFG邊長(zhǎng)CE=5,當(dāng)D,E,F三點(diǎn)旋轉(zhuǎn)至同一條直線上時(shí),求出MF的長(zhǎng);
②證明結(jié)論:正方形CEFG繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度,DM與EM數(shù)量關(guān)系與位置關(guān)系仍未發(fā)生改變.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別是,,若二次函數(shù)的圖象過(guò)兩點(diǎn),且該函數(shù)圖象的頂點(diǎn)為,其中,是整數(shù),且,,則的值為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com