【題目】在一個木箱中裝有卡片共50張,這些卡片共有三種,它們分別標有1、2、3的字樣,除此之外其他都相同,其中標有數(shù)字2卡片的張數(shù)是標有數(shù)字3卡片的張數(shù)的3倍少8張.已知從箱子中隨機摸出一張標有數(shù)字1卡片的概率是.
(1)求木箱中裝有標1的卡片張數(shù);
(2)求從箱子中隨機摸出一張標有數(shù)字3的卡片的概率.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標是,動點從原點O出發(fā),沿著軸正方向移動,以為斜邊在第一象限內作等腰直角三角形,設動點的坐標為.
(1)當時,點的坐標是 ;當時,點的坐標是 ;
(2)求出點的坐標(用含的代數(shù)式表示);
(3)已知點的坐標為,連接、,過點作軸于點,求當為何值時,當與全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在四邊形ABCD中,對角線AC與BD相交于點O,,下列判斷中錯誤的是( )
A.如果,,那么四邊形ABCD是平行四邊形
B.如果,,那么四邊形ABCD是矩形
C.如果,,那么四邊形ABCD是菱形
D.如果,AC垂直平分BD,那么四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列結論正確的個數(shù)是( 。
(1)一個多邊形的內角和是外角和的3倍,則這個多邊形是六邊形;
(2)如果一個三角形的三邊長分別為6、8、10,則最長邊上的中線長為5;
(3)若△ABC∽△DEF,相似比為1:4,則S△ABC:S△DEF=1:4;
(4)若等腰三角形一個角為80°,則底角為80°或50°.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周末,小華和小亮想用所學的數(shù)學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據相關測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(2,y1)、B(4,y2)都在反比例函數(shù)(k<0)的圖象上,則y1、y2的大小關系為( )
A. y1>y2 B. y1<y2 C. y1=y2 D. 無法確定
【答案】B
【解析】試題∵當k<0時,y=在每個象限內,y隨x的增大而增大,∴y1<y2,故選B.
考點:反比例函數(shù)增減性.
【題型】單選題
【結束】
17
【題目】如圖, 在△ABC中,AC=3、AB=4、BC=5, P為BC上一動點,PG⊥AC于點G,PH⊥AB
于點H,M是GH的中點,P在運動過程中PM的最小值為( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是( )
A.①②③ B.①②④ C.①③④ D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
利用完全平方公式,可以將多項式變形為的形式,我們把這樣的變形方法叫做多項式的配方法.
運用多項式的配方法及平方差公式能對一些多項式進行分解因式.
例如:
根據以上材料,解答下列問題:
(1)用多項式的配方法將化成的形式;
(2)利用上面閱讀材料的方法,把多項式進行因式分解;
(3)求證:,取任何實數(shù)時,多項式的值總為正數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列關于事件發(fā)生可能性的表述,正確的是( 。
A. 事件:“在地面,向上拋石子后落在地上”,該事件是隨機事件
B. 體育彩票的中獎率為10%,則買100張彩票必有10張中獎
C. 在同批次10000件產品中抽取100件發(fā)現(xiàn)有5件次品,則這批產品中大約有500件左右的次品
D. 擲兩枚硬幣,朝上的一面是一正面一反面的概率為
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com