如圖,在等腰直角三角形ABC中,O是斜邊AC的中點(diǎn),P是斜邊AC上的一個(gè)動(dòng)點(diǎn),D為射線BC上的一點(diǎn),且PB=PD,過D點(diǎn)作AC邊上的高DE.
(1)求證:PE=BO;
(2)設(shè)AC=8,AP=x,S△PBD為y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)是否存在這樣的P點(diǎn),使得△PBD的面積是△ABC面積的數(shù)學(xué)公式?如果存在,求出AP的長;如果不存在,請(qǐng)說明理由.

解:(1)P在AO上(如圖1):
∵在等腰直角三角形ABC中,O是斜邊AC的中點(diǎn)
∴BO⊥AC
∵DE⊥AC
∴∠POB=∠DEP=90°(1分)
∵PB=PD
∴∠PBD=∠PDB,
∵∠OBC=∠C=45°,
∴∠OBP+∠OBC=∠PDB=∠CPD+∠PCD,
∵∠PBD=∠PDB,
∴∠PB0=∠DPE(2分)
∴△POB≌△DEP(AAS)
∴PE=BO(1分)
P在OC上(如圖2):
∵在等腰直角三角形ABC中,O是斜邊AC的中點(diǎn)
∴BO⊥AC
∵DE⊥AC
∴∠POB=∠DEP=90°
∵PB=PD
∴∠PBD=∠PDB
∵∠C=∠DCE=∠CDE=45°
∴∠PB0=∠DPE(1分)
∴△POB≌△DEP(AAS)
∴PE=BO(1分)

(2)P在AO上(如圖1):
由△POB≌△DEP得BO=PE=4,
∴PO=DE=EC=4-x,(1分)
∴S△PBD=SPBDE-S△PDE=S△PBO+SOBDE-S△PDE=SOBDE=S△OBC-S△DEC
∴S△PBD=(2分)
P在OC上(如圖2):
由△POB≌△DEP得BO=PE=4,
∴PO=DE=EC=x-4,(1分)
∴S△PBD=S△PBC+S△PDC=S△PBC+S△PDE-S△CDE=S△PBC+S△POB-S△CDE
=(2分)

即y=(8x-x2),(0<x<8);
(3)S△ABC=16,要使得△PBD的面積是△ABC面積的,
只要,解方程得x1=2,x2=6,(2分)
即當(dāng)AP等于2或6時(shí),△PBD的面積是△ABC面積的
注:(2)中的S△PBD的求解可以直接用面積計(jì)算,而且不需分類討論,可酌情給分)
分析:(1)根據(jù)在等腰直角三角形ABC中,O是斜邊AC的中點(diǎn)得到BO⊥AC,再根據(jù)DE⊥AC得到∠POB=∠DEP=90°,從而證明△POB≌△DEP,進(jìn)而證得結(jié)論P(yáng)E=BO;解題時(shí)注意分P在AO上和P在OC上兩種情況討論;
(2)由△POB≌△DEP得BO=PE=4,當(dāng)點(diǎn)P在AO上時(shí),PO=DE=EC=4-x,此時(shí),S△PBD=SPBDE-S△PDE,當(dāng)P在OC上時(shí),PO=DE=EC=x-4,此時(shí)S△PBD=S△PBC+S△PDC=S△PBC+S△PDE-S△CDE=S△PBC+S△POB-S△CDE
(3)根據(jù)S△ABC=16,知道要使得△PBD的面積是△ABC面積的,只要,解方程得x1=2,x2=6從而得到當(dāng)AP等于2或6時(shí),△PBD的面積是△ABC面積的
點(diǎn)評(píng):本題考查了等腰直角三角形的性質(zhì)、一元二次方程的應(yīng)用及全等三角形的判定及性質(zhì),是一道難度較大、綜合性較強(qiáng)的綜合題,解題時(shí)一定要仔細(xì)審題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
底邊
=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:
(1)sad 60°的值為( B。
A.
1
2
;B.1;C.
3
2
;D.2
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

(1)sad 的值為(  ▼  )

 A.             B.1                  C.                  D.2

(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

(1)sad 的值為( ▼ )
A.B.1 C.D.2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011屆北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

(1)sad 的值為( ▼ )

A.B.1 C.D.2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:

(1)sad 的值為(  ▼  )

 A.             B. 1                  C.                  D. 2

(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案