【題目】如圖,矩形中,為原點(diǎn),點(diǎn)在軸上,點(diǎn)在軸上,點(diǎn)的坐標(biāo)為(4,3),拋物線與軸交于點(diǎn),與直線交于點(diǎn),與軸交于兩點(diǎn).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)從點(diǎn)出發(fā),在線段上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)從點(diǎn)出發(fā),在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為(秒).
①當(dāng)為何值時(shí),得面積最。
②是否存在某一時(shí)刻,使為直角三角形?若存在,直接寫出的值;若不存在,請(qǐng)說明理由.
【答案】(1);(2)① ;②
【解析】
(1)根據(jù)點(diǎn)B的坐標(biāo)可得出點(diǎn)A,C的坐標(biāo),代入拋物線解析式即可求出b,c的值,求得拋物線的解析式;
(2)①過點(diǎn)Q、P作QF⊥AB、PG⊥AC,垂足分別為F、G,推出△QFA∽△CBA,△CGP∽△CBA,用含t的式子表示OF,PG,將三角形的面積用含t的式子表示出來,結(jié)合二次函數(shù)的性質(zhì)可求出最值;②由于三角形直角的位置不確定,需分情況討論,根據(jù)點(diǎn)的坐標(biāo),再結(jié)合兩點(diǎn)間的距離公式用勾股定理求解即可.
解:(1)由題意知:A(0,3),C(4,0),
∵拋物線經(jīng)過A、B兩點(diǎn),
∴,解得,,
∴拋物線的表達(dá)式為:.
(2)① ∵四邊形ABCD是矩形,
∴∠B=90O, ∴AC2=AB2+BC2=5;
由,可得,∴D(2,3).
過點(diǎn)Q、P作QF⊥AB、PG⊥AC,垂足分別為F、G,
∵∠FAQ=∠BAC, ∠QFA=∠CBA,
∴△QFA∽△CBA.
∴,
∴.
同理:△CGP∽△CBA,
∴∴,∴,
當(dāng)時(shí),△DPQ的面積最小.最小值為.
② 由圖像可知點(diǎn)D的坐標(biāo)為(2,3),AC=5,直線AC的解析式為:.
三角形直角的位置不確定,需分情況討論:
當(dāng)時(shí),根據(jù)勾股定理可得出:
,
整理,解方程即可得解;
當(dāng)時(shí),可知點(diǎn)G運(yùn)動(dòng)到點(diǎn)B的位置,點(diǎn)P運(yùn)動(dòng)到C的位置,所需時(shí)間為t=3;
當(dāng)時(shí),同理用勾股定理得出:
;
整理求解可得t的值.
由此可得出t的值為:,,,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的中線AD、BE、CF相交于點(diǎn)G,H、I分別是BG、CG的中點(diǎn).
(1)求證:四邊形EFHI是平行四邊形;
(2)①當(dāng)AD與BC滿足條件 時(shí),四邊形EFHI是矩形;
②當(dāng)AD與BC滿足條件 時(shí),四邊形EFHI是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖像如圖,下列結(jié)論:①;②;③;④.正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的切線,點(diǎn)C在直徑AB的延長(zhǎng)線上.
(1)求證:∠A=∠BDC;
(2)若=,AC=3,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(4,0),點(diǎn)B(0,4),動(dòng)點(diǎn)C在以半徑為2的⊙O上,連接OC,過O點(diǎn)作OD⊥OC,OD與⊙O相交于點(diǎn)D,連接AB.
(1)若點(diǎn)C在第二象限的⊙O上運(yùn)動(dòng),當(dāng)OC∥AB時(shí),∠BOC的度數(shù)為 ;
(2)若點(diǎn)C在整個(gè)⊙O上運(yùn)動(dòng),當(dāng)點(diǎn)C運(yùn)動(dòng)到什么位置時(shí),△ABC的面積最大?并求出△ABC的面積的最大值;
(3)若點(diǎn)C在第一、二象限的⊙O上運(yùn)動(dòng),連接AD,當(dāng)OC∥AD時(shí),
①求出點(diǎn)C的坐標(biāo);
②直線BC是否為⊙O的切線?請(qǐng)作出判斷,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD和正方形AEFG,AB=12,AE=6.設(shè)∠BAE=α(0°≤α≤45°,點(diǎn)E在正方形ABCD內(nèi)部),BE的延長(zhǎng)線交直線DG于點(diǎn)Q.
(1)求證:△ADG≌△ABE;
(2)試求出當(dāng)α由0°變化到45°過程中,點(diǎn)Q運(yùn)動(dòng)的路線長(zhǎng),并畫出點(diǎn)Q的運(yùn)動(dòng)路徑;直接寫出當(dāng)α等于多少度時(shí),點(diǎn)G恰好在點(diǎn)Q運(yùn)動(dòng)的路徑上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是測(cè)量一物體體積的過程:
步驟一:將180 mL的水裝進(jìn)一個(gè)容量為300 mL的杯子中;
步驟二:將三個(gè)相同的玻璃球放入水中,結(jié)果水沒有滿;
步驟三:再將一個(gè)同樣的玻璃球放入水中,結(jié)果水滿溢出.
根據(jù)以上過程,推測(cè)一個(gè)玻璃球的體積在下列哪一范圍內(nèi)?(1 mL=1 cm3)( ).
A. 10 cm3以上,20 cm3以下 B. 20 cm3以上,30 cm3以下
C. 30 cm3以上,40 cm3以下 D. 40 cm3以上,50 cm3以下
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)函數(shù)圖象上的任意一點(diǎn)P(x,y),y﹣x稱為該點(diǎn)的“坐標(biāo)差”,函數(shù)圖象上所有點(diǎn)的“坐標(biāo)差”的最大值稱為該函數(shù)的“特征值”
(感悟)根據(jù)你的閱讀理解回答問題:
(1)點(diǎn)P (2,1)的“坐標(biāo)差”為 ;(直接寫出答案)
(2)求一次函數(shù)y=2x+1(﹣2≤x≤3)的“特征值”;
(應(yīng)用)(3)二次函數(shù)y=﹣x2+bx+c(bc≠0)交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A與點(diǎn)B的“坐標(biāo)差”相等,若此二次函數(shù)的“特征值”為﹣1,當(dāng)m≤x≤m+3時(shí),此函數(shù)的最大值為﹣2m,求m.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com