【題目】根據(jù)對(duì)寧波市相關(guān)的市場(chǎng)物價(jià)調(diào)研,某批發(fā)市場(chǎng)內(nèi)甲種水果的銷售利潤(rùn)y1(千元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y1=0.25x,乙種水果的銷售利潤(rùn)y2(千元)與進(jìn)貨量x(噸)之間的函數(shù)y2=ax2+bx+c的圖象如圖所示.
(1)求出y2與x之間的函數(shù)關(guān)系式;
(2)如果該市場(chǎng)準(zhǔn)備進(jìn)甲、乙兩種水果共8噸,設(shè)乙水果的進(jìn)貨量為t噸,寫出這兩種水果所獲得的銷售利潤(rùn)之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤(rùn)之和最大,最大利潤(rùn)是多少?
【答案】(1)y2=﹣x2+x;(2)w=﹣(t﹣4)2+6,t=4時(shí),w的值最大,最大值為6,
∴兩種水果各進(jìn)4噸時(shí)獲得的銷售利潤(rùn)之和最大,最大利潤(rùn)是6千元.
【解析】
(1)利用待定系數(shù)法即可解決問(wèn)題;
(2)銷售利潤(rùn)之和W=甲種水果的利潤(rùn)+乙種水果的利潤(rùn),利用配方法求得二次函數(shù)的最值即可.
(1)∵函數(shù)y2=ax2+bx+c的圖象經(jīng)過(guò)(0,0),(1,2),(4,5),∴,解得:,∴y2=﹣x2+x.
(2)w = y1+y2=(8﹣t)﹣t2+t=﹣(t﹣4)2+6,∴t=4時(shí),w的值最大,最大值為6,∴兩種水果各進(jìn)4噸時(shí)獲得的銷售利潤(rùn)之和最大,最大利潤(rùn)是6千元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知邊長(zhǎng)為4的正方形截去一個(gè)角后成為五邊形ABCDE(如圖),其中AF=2,BF=1.當(dāng)P在AB上運(yùn)動(dòng)時(shí),矩形PNDM的最大面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)夢(mèng)”是中華民族每一個(gè)人的夢(mèng),也是每一個(gè)中小學(xué)生的夢(mèng),各中小學(xué)開展經(jīng)典誦讀活動(dòng),無(wú)疑是“中國(guó)夢(mèng)”教育這一宏大樂(lè)章里的響亮音符,學(xué)校在經(jīng)典誦讀活動(dòng)中,對(duì)全校學(xué)生用A、B、C、D四個(gè)等級(jí)進(jìn)行評(píng)價(jià),現(xiàn)從中抽取若干個(gè)學(xué)生進(jìn)行調(diào)查,繪制出了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:
(1)共抽取了多少個(gè)學(xué)生進(jìn)行調(diào)查?
(2)將圖甲中的折線統(tǒng)計(jì)圖補(bǔ)充完整.
(3)求出圖乙中B等級(jí)所占圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)、,與直線相交于點(diǎn).
(1)求點(diǎn)坐標(biāo);
(2)如果在軸上存在一點(diǎn),使是以為底邊的等腰三角形,求點(diǎn)坐標(biāo);
(3)在直線上是否存在點(diǎn),使的面積等于6?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在A、B兩地之間有汽車站C,客車由A地駛往C站,貨車由B地駛往A地,兩車同時(shí)出發(fā),勻速行駛,圖②是客車、貨車離 C站的路程、(km)與行駛時(shí)間x(h)之間的函數(shù)圖像.
(1)客車的速度是 km/h;
(2)求貨車由 B地行駛至 A地所用的時(shí)間;
(3)求點(diǎn)E的坐標(biāo),并解釋點(diǎn) E的實(shí)際意義.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(2,4)和B(﹣1,﹣5)兩點(diǎn).
(1)求出該一次函數(shù)的表達(dá)式;
(2)畫出該一次函數(shù)的圖象;
(3)判斷(﹣5,﹣4)是否在這個(gè)函數(shù)的圖象上?
(4)求出該函數(shù)圖象與坐標(biāo)軸圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣4,2),B(﹣2,4),C(﹣4,4),以原點(diǎn)O為位似中心,將△ABC縮小后得到△A′B′C′.若點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為(2,﹣2),則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。
A. (2,﹣3) B. (2,﹣1) C. (3,﹣2) D. (1,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c與x軸交于點(diǎn)A,B(A在B的左側(cè)),拋物線的對(duì)稱軸為直線x=1,AB=4.
(1)求拋物線的表達(dá)式;
(2)拋物線上有兩點(diǎn)M(x1,y1)和N(x2,y2),若x1<1,x2>1,x1+x2>2,試判斷y1與y2的大小,并說(shuō)明理由;
(3)平移該拋物線,使平移后的拋物線經(jīng)過(guò)點(diǎn)O,且與x軸交于點(diǎn)D,記平移后的拋物線頂點(diǎn)為點(diǎn)P
①若△ODP是等腰直角三角形,求點(diǎn)P的坐標(biāo);
②在①的條件下,直線x=m(0<m<3)分別交線段BP、BC于點(diǎn)E、F,且△BEF的面積:△BPC的面積=2:3,直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長(zhǎng)有最大值,若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)求PAC為直角三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com