【題目】如圖在Rt△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),BE⊥CD,垂足為點(diǎn)E.已知AC=15,cosA=

(1)求線段CD的長;

(2)求sin∠DBE的值.

【答案】解:(1)∵在Rt△ABC中,AC=15,cosA=,∴AB=25。

∵△ACB為直角三角形,D是邊AB的中點(diǎn),∴CD=。

(2)在Rt△ABC中,

又AD=BD=CD=,設(shè)DE=x,EB=y,則

在Rt△BDE中,

在Rt△BCE中,,

聯(lián)立,解得x=

。

【解析】(1)根據(jù)直角三角形斜邊上的中線等于斜邊的一半,求出AB的長,即可求出CD的長;

由于D為AB上的中點(diǎn),求出AD=BD=CD= ,設(shè)DE=x,EB=y,利用勾股定理即可求出x的值,據(jù)此解答即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小西“過直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過程.

已知:直線l及直線l外一點(diǎn)P.

求作:直線PQ,使得PQl.

做法:如圖,

①在直線l的異側(cè)取一點(diǎn)K,以點(diǎn)P為圓心,PK長為半徑畫弧,交直線l于點(diǎn)AB;

②分別以點(diǎn)A,B為圓心,大于AB的同樣長為半徑畫弧,兩弧交于點(diǎn)Q(P點(diǎn)不重合);

③作直線PQ,則直線PQ就是所求作的直線.

根據(jù)小西設(shè)計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵PA= ,QA= ,

PQl( )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是學(xué)習(xí)分式方程應(yīng)用時,老師板書的問題和兩名同學(xué)所列的方程.

根據(jù)以上信息,解答下列問題.

(1)冰冰同學(xué)所列方程中的x表示什么,慶慶同學(xué)所列方程中的y表示什么;

(2)兩個方程中任選一個,并寫出它的等量關(guān)系;

(3)解(2)中你所選擇的方程,并回答老師提出的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】海南建省30年來,各項事業(yè)取得令人矚目的成就,以2016年為例,全省社會固定資產(chǎn)總投資約3730億元,其中包括中央項目、省屬項目、地(市)屬項目、縣(市)屬項目和其他項目.圖1、圖2分別是這五個項目的投資額不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請完成下列問題:

(1)在圖1中,先計算地(市)屬項目投資額為多少億元,然后將條形統(tǒng)計圖補(bǔ)充完整;

(2)在圖2中,縣(市)屬項目部分所占百分比為m%、對應(yīng)的圓心角為β,求m的值,β等于多少度(m、β均取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一個量角器與一張等邊三角形(△ABC)紙片放置成軸對稱圖形,CDAB,垂足為D,半圓(量角器)的圓心與點(diǎn)D重合,此時,測得頂點(diǎn)C到量角器最高點(diǎn)的距離CE=2cm,將量角器沿DC方向平移1cm,半圓(量角器)恰與△ABC的邊AC,BC相切,如圖2,AB的長為__________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點(diǎn),且∠EAF=45°,EC=1,將△ADE繞點(diǎn)A沿順時針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點(diǎn)B作BM∥AG,交AF于點(diǎn)M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是  

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表顯示的是某種大豆在相同條件下的發(fā)芽試驗(yàn)結(jié)果:

每批粒數(shù)n

100

300

400

600

1000

2000

3000

發(fā)芽的粒數(shù)m

96

282

382

570

948

1904

2850

發(fā)芽的頻率

0.960

0.940

0.955

0.950

0.948

0.952

0.950

下面有三個推斷:

當(dāng)n為400時,發(fā)芽的大豆粒數(shù)為382,發(fā)芽的頻率為0.955,所以大豆發(fā)芽的概率是0.955;

隨著試驗(yàn)時大豆的粒數(shù)的增加,大豆發(fā)芽的頻率總在0.95附近擺動,顯示出一定的穩(wěn)定性,可以估計大豆發(fā)芽的概率是0.95;

若大豆粒數(shù)n為4000,估計大豆發(fā)芽的粒數(shù)大約為3800粒.

其中推斷合理的是( 。

A. ①②③ B. ①② C. ①③ D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)A、C分別是∠B的兩條邊上的點(diǎn),點(diǎn)D、E分別是直線BA、BC上的點(diǎn),直線AE、CD相交于點(diǎn)P

1)點(diǎn)DE分別在線段BA、BC上;

①若∠B60°(如圖1),且ADBE,BDCE,則∠APD的度數(shù)為   ;

②若∠B90°(如圖2),且ADBC,BDCE,求∠APD的度數(shù);

2)如圖3,點(diǎn)D、E分別在線段AB、BC的延長線上,若∠B90°,ADBC,∠APD45°,求證:BDCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AOB中,∠AOB=90°,點(diǎn)A的坐標(biāo)為(4,2),BO=4,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B,則k的值為_____

查看答案和解析>>

同步練習(xí)冊答案